Nowa: A Wait-Free Continuation-Stealing
Concurrency Platform

Florian Schmaus, Nicolas Pfeiffer
Wolfgang Schroder-Preikschat
Friedrich-Alexander-University
Erlangen-Niirnberg (FAU)
Erlangen, Germany
{schmaus pfeiffer,wosch} @cs.fau.de

Abstract—It is an ongoing challenge to efficiently use paral-
lelism with today’s multi- and many-core processors. Scalability
becomes more crucial than ever with the rapidly growing number
of processing elements in many-core systems that operate in data
centres and embedded domains. Guaranteeing scalability is often
ensured by using fully-strict fork/join concurrency, which is the
prevalent approach used by concurrency platforms like Cilk. The
runtime systems employed by those platforms typically resort
to lock-based synchronisation due to the complex interactions
of data structures within the runtime. However, locking limits
scalability severely. With the availability of commercial off-the-
shelf systems with hundreds of logical cores, this is becoming a
problem for an increasing number of systems.

This paper presents Nowa, a novel wait-free approach to arbi-
trate the plentiful concurrent strands managed by a concurrency
platform’s runtime system. The wait-free approach is enabled
by exploiting inherent properties of fully-strict fork/join concur-
rency, and hence is potentially applicable for every continuation-
stealing runtime system of a concurrency platform. We have im-
plemented Nowa and compared it with existing runtime systems,
including Cilk Plus, and Threading Building Blocks (TBB), which
employ a lock-based approach. Our evaluation results show that
the wait-free implementation increases the performance up to
1.64 x compared to lock-based ones, on a system with 256 hard-
ware threads. The performance increased by 1.17 X on average,
while no but one benchmark exhibited performance regression.
Compared against OpenMP tasks using Clang’s 1ibomp, Nowa
outperforms OpenMP by 8.68 X on average.

Index Terms—scheduling, concurrency platform, wait-free

I. INTRODUCTION

Driven by the rapidly rising number of computation cores,
the way programmers can express concurrency in their code
and how this concurrency is efficiently transformed into paral-
lelism becomes decisive. Since it is cumbersome to introduce
support for parallelism into serial programming languages [/1f],
new programming languages are designed with primitives
supporting parallelism from the start. As a result, concurrency
control is part of the language specification. An example of this
is the Go programming language. Besides the programming
language layer, Go also includes a runtime system, which is
the essential driver of the parallel execution of the concurrency
expressed in the Go programs. The combination of a parallel
programming language and an accompanying runtime system
is called a concurrency platform.

Timo Honig
Ruhr University Bochum (RUB)
Bochum, Germany
timo.hoenig @rub.de

Jorg Nolte
Brandenburg University of Technology
Cottbus-Senftenberg (BTU)
Cottbus, Germany
joerg.nolte @b-tu.de

—+— Nowa —=— Fibril —e— Cilk Plus —— TBB
nqueens (T's = 5.004 % 0.001 s)

100
(=7
=
¥ 50
(=7
)

0 2 \ ! !
64 128 192 256
Threads

Figure 1: Comparison of runtime systems of different concur-
rency platforms. Our wait-free Nowa system exhibits better
speedup than the lock-based ones.

The choice of concurrency platform has a direct impact on
the execution time of a parallel application. shows a
comparison of concurrency platforms, including established
ones like Cilk Plus or Threading Building Blocks (TBB).
However, the performance of existing concurrency platforms
is often limited by the lock-based synchronisation used within
the platform’s runtime system. In contrast, as can be seen
in our Nowa runtime system unlocks additional
performance on systems with hundreds of hardware threads,
by combining our wait-free [2]] approach with a work-stealing
queue algorithm, optimised for scalability. As to the growing
number of cores at the hardware level, it is also safe to assume
that the relevance of concurrency platforms will continue to
increase in the future.

All concurrency platforms’ joint property is that they consist
of a programming-language layer and a runtime system. The
programming-language layer’s goal is to reduce the devel-
oper’s burden of concurrent programming. This is done by
providing various language constructs to define and coordinate
concurrent tasks. Those constructs may deliberately limit the
amount of concurrency that can unfold at a given point. For
example, fully-strict concurrent computations [3]] require all
child tasks to finish before a parent task itself can finish[l]

IContemporary sometimes referred to as “Structured Concurrency”.

© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or

reuse of any copyrighted component of this work in other works.

Schmaus et al. “Nowa: A Wait-Free Continuation-Stealing Concurrency Platform”. In: 2021 IEEE International Parallel and Distributed Processing Symposium
(IPDPS). May 2021. URL: https://ieeexplore.ieee.org/document/9460452 doi: 10.1109/IPDPS49936.2021.00044

https://orcid.org/0000-0002-7324-5346
 https://orcid.org/0000-0003-3797-3693
mailto:schmaus@cs.fau.de
mailto:pfeiffer@cs.fau.de
mailto:wosch@cs.fau.de
https://orcid.org/0000-0002-1818-0869
mailto:timo.hoenig@rub.de
mailto:joerg.nolte@b-tu.de
https://ieeexplore.ieee.org/document/9460452

unsigned fib(unsigned n) {

if (n < 2) return n;

unsigned a = spawn fib(n - 1);
unsigned b = fib(n - 2);

sync ;

return a + b;

Listing 1: Fibonacci function with concurrency keywords

While this may be seen as an undesirable restriction at first,
it does not practically limit the achievable parallelism of an
application, if the application contains a sufficient level of
concurrency. It does, however, simplify reasoning about the
program, thus enabling the derivation of space-, time- and
communication-bounds [4]].

shows keywords that a concurrency platform
may introduce. Here, the implementation of the calculation
of the n-th Fibonacci number is extended by two additional
keywords: spawn and sync. Call expressions annotated with
spawn indicate that the caller may continue to execute in
parallel with the callee. A function whose body contains a
spawn statement is called a spawning function. All potentially
spawned tasks of a spawning function join at the sync expres-
sion (or at the return from the function). However, the spawn
keyword merely expresses the potential for parallelism. The
decision to lift this annotated concurrency into real parallelism
can be made dynamically at runtime.

If fib() were naively implemented using POSIX threads,
then the large amount of created threads would probably
harm the system’s performance. In contrast, when a con-
currency platform is used to parallelise a computation, the
programming-language layer and the runtime system cooper-
ate to make ideal use of the available computational resources,
without causing overutilisation of the same. This collaboration
enables dynamic task parallelism and is a decisive character-
istic of some concurrency platforms. This relieves developers
from pondering about the negative impact of parallel over-
decomposition. Examples of concurrency platforms include
Cilk-5 [5]], MIT’s OpenCilk [6]], Cilk Plus [7], OpenMP, TBB,
X10 [8]], and Go. They usually structure parallelism using the
fork/join model and employ randomised work-stealing [4].

This paper presents Nowa, our non-blocking wait-free
approach for tasks coordination in continuation-stealing con-
currency platforms. To the best of our knowledge, this is
the first wait-free approach. Our implementation of the Nowa
runtime system employs randomised work-stealing, allows for
dynamic task parallelism and employs a practical solution to
the cactus stack problem [9]]. In our empirical study, the Nowa
runtime system yielded promising results of up to 1.64 x the
performance of lock-based runtime systems, on a system with
256 hardware threads.

The remainder of this paper is organised as follows: The
next section provides background information about the basic
building blocks of concurrency platforms and related work. In
Section [IIf we describe the mechanics of continuation-stealing

top

€1 \
€2
- 63
e4 <f<q
C
©
g G
B >
2 |Qw, | 2 Qw,
+
§ bottom §
~
<

> ‘W1= ‘W2=

Figure 2: Workers and associated work-stealing queues

concurrency platforms, which are essential to understand our

approach. In we present our wait-free approach
for continuation-stealing platforms. We present an evaluation

of our approach in and conclude in

II. BACKGROUND

The properties of randomised work-stealing make it par-
ticularly appealing for concurrency platforms. In contrast to
scheduling with a global “ready-list”, work-stealing provides
every worker with a private queue, which other workers can
steal from once their queue runs out of work. This way,
conflicts due scheduling are distributed over workers, reducing
contention and preventing a single hotspot from forming and
becoming a bottleneck. Furthermore, there are proven bounds
on computation and space requirements, guaranteeing linear
speedup for an ideal work-stealing scheduler [4]

The concrete incarnation of a worker depends on the kind of
concurrency platform. If the platform’s runtime system solely
resides in user-space, which is currently the case for most
platforms, then workers are implemented based on kernel-level
threads. If the platform is based on a spatially-multiplexing
operating system [10]], then workers are CPU cores that are
exclusively assigned to the application.

A. Work-Stealing Queues

While every fully-synchronised queue could be used for
work-stealing, a queue algorithm exploiting the unique prop-
erties of work-stealing is able to increase scheduling perfor-
mance by reducing contention. We will refer to such queues
as work-stealing queues.

One can summarise the common properties of work-stealing
queues as follows: First, they are double-ended queues (de-
queues), where one end is referred to as bottom and the other
as top. The operations provided by work-stealing queues on
their ends are not symmetric: While it is possible to remove
items from both ends, it is only possible to append at the
bottom of the queue. The bottom end is used exclusively
by the queue’s worker—remember that there is a queue

for every worker—in a stack-like manner, where items are
pushed to and popped. Consequently, the operations are named
pushBottom() and popBottom(). Work-stealing attempts are
solely performed on the other end of the queue, the top end.
Thieves use the popTop() operation to steal work from other
workers’ queues, the victims. depicts the anatomy of
work-stealing queues for thief and victim.

All queue operations must be partially multithread-safe.
That is, popTop() can be used concurrently with itself and
at most one of the two bottom operations on the same queue
instance. However, since pushBottom() and popBottom() are
only ever used by the same worker, work-stealing queues
do not need to support concurrent bottom operations. Work-
stealing queue algorithms exploit these properties.

B. Child-Stealing versus Continuation-Stealing

One of the most important aspects of a concurrency plat-
form is the employed work-stealing scheme [11]. It can be
either child-stealing or continuation-stealing (Figure 3), and
influences, among other things, the order in which tasks are
executed.

In child-stealing, a spawning function makes its child tasks
available to be stolen. The example in shows that,
at the fork point, Wy pushes its child task 7. into its work-
stealing queue and continues executing 7. This allows Wy
to steal the child task 7. from W;. While this scheme is very
intuitive, it has multiple drawbacks. First, due to the potentially
large amount of child tasks, those may need to be dynamically
allocated. Hence the runtime system inherits the performance
characteristics of the dynamic memory allocator, which often
employs locks. Secondly, child-stealing tends to cause more
frequent stack switches, which are expensive.

With continuation-stealing, the runtime system offers the
continuation after the spawned child task to thieves. While
this may appear as a subtle change, it has a strong impact.
Most notably, if the continuation is not stolen, which is the
typical case, the worker can proceed without a stack switch
(Figure 3c). Furthermore, since, in fully-strict continuation-
stealing, there is only at most one pending continuation per
spawning function, the storage for the continuation instance
can be allocated on the stack without requiring the dynamic
memory allocator. shows an example where a plat-
form that employs child-stealing, TBB, performs much worse
than the continuation-stealing ones.

C. The Cactus-Stack Problem

The last missing central piece of fork/join concurrency
platforms is the cactus stack |[12]], a special parallel call stack
that forms as a result of the parent-child relationship between
function instances and their stack frames, respectively. Stack
frames of forked off functions are allocated on separate linear
stacks than their parent stack frame but maintain a reference
to it. This forms a tree-like data structure, where the linear
stacks are the nodes, and the references are the edges.

Suspended stack frames (stack frames of function instances
waiting at a sync point) at the bottom of a linear stack cause

the stack to be blocked. Consequently, the worker executing on
the blocked stack has to use a new empty stack for executing
another task, until the sync condition of the suspended stack
frame is fulfilled, and the frame’s execution can continue.

In theory, this can lead to an impractically large stack
space (Sp) consumption, with Sp < DPS; pages of physical
memory for a given program, where P is the number of
threads used, S; is the maximum number of pages of stack
space used by the serial execution of the program, and D is
the forking depth, the maximum possible number of spawn
points on any path from the root to a leaf in the cactus stack.
Attempts to find a solution for the cactus stack with a tighter
bound for memory consumption, however, resulted in either
sacrificing performance or interoperability between serial and
parallel code. Finding a solution that satisfies all three criteria
— low memory footprint, high speedup, and interoperability
between serial and parallel code — is known as the cactus
stack problem [13]].

D. Related Work

To solve the cactus-stack problem, Yang and Mellor-
Crummey presented a “practical solution” to the cactus stack
problem, which they implemented in their runtime system
Fibril [9]. Whenever a stack frame is suspended, the operating
system is informed that the stack space below the suspended
stack frame is not used anymore and physical pages are freed,
while the virtual mapping is preserved, thus lowering only the
physical space consumption. Cilk-5 [5]] forwent serial-parallel
interoperability to limit space consumption in favour of good
performance. Cilk Plus [7]] does not limit interoperability, but
the number of usable stacks, thereby preventing workers from
stealing once the limit is reached. Cilk-M [13]] uses thread-
local memory mappings to build cactus stacks that workers
perceive as linear stacks.

Tapir [|14] pushes the knowledge about concurrency estab-
lished by fork-join parallelism into the compiler’s intermediate
representation to enable further optimizations. Acar et al.
present a dynamic Scalable Non-Zero Indicator to coordinate
nested parallelism [|15]. While their approach is not limited
to fully-strict parallelism, it depends on dynamic memory
allocation.

One of the earliest described work-stealing queue algorithm
is the THE queufﬂ used by Cilk-5 [5]. It is implemented as a
bounded buffer with top and bottom indices. The THE queue
already exploited the partial thread-safety requirement to elide
locking if the queue’s top and bottom pointer are non-
conflicting. That is, the top and bottom indices do not refer to
the same queue element. Later, Arora et al. presented a non-
blocking work-stealing queue algorithm, henceforth referred
to as ABP queue [16]]. The ABP queue uses atomic compare-
and-swap (CAS) instructions to synchronise concurrent queue
operations lock-free. Every popTop() attempt requires an
atomic operation to arbitrate the access. However, just as the

2This queue algorithm is referred to as “THE protocol” in the according
publication [5]. THE is an acronym for Tail, Head, and Exception.

void parent() { VV'l \\-2 W 1 VVQ \Vl \7\72 VVl \Vg
S ™S S ™S
spawn child(); steal steal
" T éy@ " S S To 7S To
| (R QT 4 Rl g Qm

switch «f] switch «f]

} oG TS

child stolen
(a) Parent task 7,, Continuation

(of parent task) 7}, and Child 7¢

child not stolen

(b) Child-Stealing

Tp§

continuation stolen continuation not stolen

(c) Continuation-Stealing

Figure 3: Child-Stealing versus Continuation-Stealing

THE queue can elide locking, the ABP queue is able to omit
the CAS instruction for popBottom(). Finally, pushBottom()
never requires any atomic instruction. Modern architectures,
however, may require a memory fence.

The main disadvantage of the ABP queue is that its effective
capacity may decrease dynamically. Since the underlying array
is not used as a ring buffer and pushBottom() and popTop()
only ever increment the indices, space freed by popTop()
cannot be used for adding new elements. The ABP queue
mitigates this by resetting the top and bottom value if it
becomes empty. However, the reduced effective-capacity con-
dition may persist for an extended period until the mitigation
mechanism kicks in. In 2005 Chase et al. presented a work-
stealing queue [17] that does not have this drawback. Their
queue algorithm, which we will refer to as CL queue, is
based on 64-bit counters that double as generation counters
and indices for a ring buffer.

The publications introducing the THE, ABP, and CL queue
only briefly consider memory models and, thus, required
memory barriers. The first CL queue algorithm utilizing C11°s
memory model was published in 2013 [18] to the best of our
knowledge. Shortly after, Norris ef al. discovered a bug in the
published implementation using model checking [19]. Lock-
free data structures are often implemented using overly strong
ordering parameters [20]. Concurrency platform designers
should strive to use relaxed memory barriers where they are
safe, which can significantly increase performance.

III. CONTINUATION-STEALING CONCURRENCY
PLATFORMS

A. The DAG Model of Continuation-Stealing

The conceptual link between a concurrency platform’s
programming-language layer and its runtime system is a
directed acyclic graph (DAG). We use the following DAG
model based on three types of vertices:

O Strand Vertices for a strand of serial execution.
Spawn Vertices for a spawn-point within the program.
¢ Sync Vertices for a sync-point within the program.
Every strand consists of a sequence of one or more in-
structions not involving any parallel control. Hence a strand
vertex never forks into two sub-strands. Instead, such forks

are represented by spawn vertices. Just like spawn at the
programming-language level, a spawn vertex merely denotes
the possibility that its sub-strands could be executed in parallel.
Sync vertices ensure that the sync condition holds before
allowing the control-flow to proceed past them. In fully-strict
parallelism, the sync condition is that the number of active
parallel strands IV, spawned by the current spawning function,
is zero: N, = 0. Since there is already an active strand
upon entering the spawning function, the maximum value of
N. is the number of spawn call sites plus one. Due to the
dynamic nature of spawn points, N, is only incremented if a
continuation is actually stolen, and hence might never exceed
its initial value.

shows an example of a function using spawn and
sync to express concurrency. The function’s DAG is shown

in where the spawn and sync vertices appear as
filled dots. In our model, every spawn vertex has an indegree
of 1 and an outdegree of 2, and every sync vertex has an
indegree of > 1 and outdegree of 1. The two outgoing edges
of a spawn vertex consists of precisely one child edge and one
continuation edge. A child edge leads to a strand representing
a spawned function, whereas a continuation edge leads to
the control-flow continuation after the spawning function call.
Every spawning function’s DAG also has one main path: The
path beginning from the function’s start vertex to the end
vertex only following continuation edges.

B. Dynamic Strand-to-Worker Mapping

The concurrency platform’s runtime systems dynamically
maps a fork/join program’s DAG to the available workers.
During runtime, any worker processing a spawn point pushes
the continuation after the spawning call site into its work-
stealing queue, admitting the continuation to be stolen by other
workers. The worker then calls the spawned child function
using the standard calling convention. Once the child function
returns, the worker attempts to pop work from its work-
stealing queue using popBottom() line 4). If the pop
operation returns a work item, then, due to the LIFO nature
of the bottom end of work-stealing queues, this item must
be the continuation that the worker previously pushed. The
worker can now safely discard this continuation and proceed
with the control-flow because it leads directly to the discarded

14} Wa Wi Wa Wi Wy
1 foo(char[] data, int n) {
z@char* p;) Steq; ! Steqy
L e o > g © ¢
+_p = data; E = =
s(2)x = spawn a(p, n); Sy Y
s(3)p = data + n; s @ &?ﬁ @
7(4)y = 'spawn b(p, n); ‘\' ' pop() pop ()X
s \p = data + (2 * n); ‘N
92 = c(p, n); C? @
10 sync;
n(6)return x +y + z;

implicit explicit
syncs sync

(b) DAG of foo()

2}

(a) Spawning function foo()

® ®

(c) Potential Mapping 1 (d) Potential Mapping 2 (e) Potential Mapping 3

Figure 4: The spawning function foo(), its DAG, and resulting potential strand-to-worker mappings (further exists)

continuation. If the pop operation returns no work item, then
the continuation must have been stolen. In this case, the worker
has to perform an implicit sync operation line 5).
to [Ae] demonstrate the outcome of three possible
sequences of events resulting from the execution of foo()
(of [Figure 4a), by showing the according strand-to-worker

mapping. In the second worker, W, steals continu-
ation #3 from the first worker (W1). Upon finishing executing

a(), W, attempts to pop the continuation #3 from its work-
stealing queue, which he just pushed into the queue before
executing 2. W; finds its queue empty, i.e. popBottom()
(denoted in as pop() for brevity) does not return
the continuation: W, now knows the continuation was stolen
and performs an implicit sync operation. This operation yields
a negative result, which means that the worker is now out of
work and needs to resort to work-stealing. Meanwhile W
executed the stolen continuation #3 and then, after pushing
continuation #5, spawned b() (strand #4). Upon returning
from b(), popBottom(), invoked by Ws, yields the contin-
vation 5, which the worker discards and simply continues.
After finishing #5, the control-flow leads W5 into an explicit
sync point. Here Wy finds that W already finished the only
spawned function a(), and the sync point is ready to proceed.

In W, steals continuation #3. However, unlike
the previous example, W; steals continuation #5 from Wos.
This leads to Wy finding its work-stealing queue empty after
executing b(), resulting in an implicit sync, which returns a
negative result and hence leads W» to the quest for work.
W1 performs an explicit sync operation due to encountering
the sync statement after executing 5, which returns a positive
result: W is free to proceed with strand 6.

Finally, in nearly the same sequence of events,
as in happened. However, W5 spend slightly more
time with strand #4. Thereby strand #4 becomes the last
finishing strand before the sync point. This leads eventually to
W5, being the worker where the sync condition holds. Thus,
strand #6 after the explicit sync point is executed by Ws, not

spawn(func)

programming language layer
runtime system layer

icont = contAfterSpawn();
2pushBottom(cont); E
sfunc();

4if (!popBottom())
s tryResume();

popTop() X

resume ()

Figure 5: Coordination logic within the runtime system and
the programming-language layer interface

by Wy, as in

The typical function interaction of a continuation-stealing
runtime system is shown in [Figure 5| which shows the central
role of tryResume(): Every invoking control flow has either
reached an explicit or implicit sync point. Hence one of
the actions performed in this function is to decrement ..
Then, the resulting value of N, is inspected to see if the
sync condition holds. Depending on the outcome, the worker
either resumes execution after the explicit sync point, or goes
over to steal work. If the sync condition is not satisfied
at an explicit sync point, the spawning function’s stack is
suspended (cf. [Section 1I-C). As soon as popTop() returns
a continuation while performing work-stealing, the worker
invokes the continuation’s run() function to resume the same.
Since this means that a new parallel task has been forked,
N is incremented by run() before calling the continuation’s

Worker Thief

R

continue continue
sequential work-

execution stealing é

resume()
continuation

0

|

I

3
-
v Qounsoyki

L
Q

Vi
ek

proceed after
join-point

work-stealing

Figure 6: The data race between worker and thieves

1void random_steal (worker_t * w) {
worker_t * victim; fibril_t * f;

5 while (1) {

4 victim = workers[rand() % NPROCS];

5 lock(victim->deque) ;

6 f = steal(victim->deque);

7 if (f == NULL) [unlock(victim->deque) ;
8 else break;

©

s}

o lock(f); unlock(victim->deque) ;
n if (f->count++ == 0) {

12 f->count += 1;

13 f->stack = victim->stack;

14 }

15 unlock(F) ;

Listing 2: Excerpt showing the usage of locks in Fibril [9]

resume () function.

C. The Data Race between Worker and Thieves

Within the just described scheme, employed by
continuation-stealing runtime systems, there is a data race
that is not obvious at first glance: Any pop operation on
a queue and the potential subsequent modification of N,
needs to be performed atomically. shows the critical
sections that need to be guarded by a mutex to eliminate the
data race. Otherwise, a worker who found the queue empty
after calling popBottom() may observe N, to be zero after
decrementing it, while there are, in fact, still active parallel
tasks. Such a worker would assume that the sync condition
holds when this is not the case.

This could happen because a thief may already have stolen
the continuation from the worker’s queue, using popTop(),
but did not yet increment N,. As a result, a worker may er-
roneously assume that the sync condition holds and continues
after the sync point. After that, the outcome of the program
execution is undefined.

shows how the runtime system of Fibril [9]
prevents this data race. It uses two locks, one for the queue and
one for the data structure containing N, (fibril t.count in

int foo() {
01nt X, VY, Z; |0
x = spawn a();

y = spawn b(); M
z = c(Q);

sync;

return x +y + z;

b

Listing 3: Spawning function anatomy wrt. o and w

w

concurrenty
incremented

sequentially
incremented

immutable

Fibril’s case). However, both locks are briefly simultaneously
acquired in line 10 of combining the two individual
locks into the large critical section, displayed in

IV. WAIT-FREE SYNCHRONISATION OF STRANDS IN
CONCURRENCY PLATFORMS

We now present Nowa, our wait-free approach to strand
coordination in continuation-stealing runtime systems. The
core idea of Nowa is the transformation of the hazardous race
condition presented in into a benign one. This
transformation lifts the requirement for acquiring a lock during
the critical sections shown in allows to modify any
counter via atomic instructions and, ultimately, turns the whole
operation wait-free [2]. We will show that one can initialise
the counter used by the sync-condition with an arbitrarily large
value and later reset it to N, at explicit sync points, enabling
the transformation of the race condition.

A. Decomposition of N,

One central insight Nowa is based on is that N, of a
spawning function can be decomposed into two counters. The
first being the number of actually forked tasks «, the second
being the number of joined tasks w. At any point in time,
the number of active parallel tasks is equal to the number of
forked tasks minus the number of joined tasks, which leads to

N,=a—w ()

shows the anatomy of a spawning function. We
observe that « is only ever incremented after the first spawn

statement until the last spawn statement. After that, the value
of a becomes effectively constant. On the other side, w is also
initially zero and will be potentially incremented from the first
spawn statement until a subsequent explicit sync statement.

B. The Wait-Free Nowa Approach

Nowa introduces a new variable V.’ defined as
N'r/ = Imax —Ww (2)

where I« is the maximal value of the datatype of the sync-
condition counter. During the first phase, before the explicit
sync point is reached, Nowa uses N,’ instead of N, as
the sync-condition counter. Since w is zero at the start of a
spawning function, Nowa initialises the sync-condition counter
with I.x. As before, every time a parallel task finishes, the

sync-condition counter is decremented. However, since it was
initialised with I,x, workers will not erroneously observe the
sync condition. Once the explicit sync point is reached, Nowa
will restore the value of N, in the sync-condition counter,
henceforth allowing workers to observe the sync condition.

Nowa exploits four invariants found in fully-strict fork/join
parallelism. Invariant I: N, can only become zero once the
explicit sync point is reached. Until then, there is at least
one task still running: The one heading towards the explicit
sync point. Invariant II: « is only ever incremented by the
same single control-flow (which may be executed by different
workers, but never in parallel) and hence does not need to be
synchronised. The a incrementing control flow is along the
main path (as defined in [Section III-A). Invariant III: Once
the explicit sync point is reached, no more steals will happen,
and « becomes immutable. Workers only fork new parallel
tasks along the main path, and once the explicit sync point is
reached, the only control-flow on the main path is suspended.
Invariant I'V: Tasks trying to join with their peers only need to
know if there are still active parallel tasks. The exact number
of outstanding active tasks, however, is irrelevant for this
operation. Joining tasks are only interested in a boolean is-
positive indication of N,.

It is sufficient for workers in the first phase to observe any
positive value at the sync-condition counter due to Invariant I
and Invariant I'V. Since Nowa initialises the counter with Iy,
a non-positive value could only be observed if more than
Inax tasks spawned. As soon as the second phase is entered,
by reaching the explicit sync point, we need to restore the
actual value of the counter of active parallel tasks (/V.) to
give workers a chance to observe the sync condition. Note
that IV can be safely used as the value for the sync-condition
counter within the second phase, as the race condition between
workers and thieves no longer exists because of Invariant III.

To see how the restoration of N, is possible, we have to

complete by Inax, yielding Now we

solve this equation for N,.

Ny 4 Ipax = @ — w + Inax (3)
N: = o —w+ Inax — Imax
= Imax — W — Tpax +

= (Jmax = w) — (Imax — @) 4

=N — (Inax — @) &)

By substituting I,.x —w with N/, as per we obtain
which can be used to restore N, from N,’ and «
upon entering the second phase.

Nowa’s runtime system creates a stack object for every
called spawning function. This object contains the state re-
quired for the coordination of the potentially spawned strands.
Instead of a mutex and a counter for N, Nowa’s state
includes a field for o and an atomic integer member for the
sync-condition counter. As per Invariant II, the type for «
does not need to be atomic. The sync-condition counter is

int foo() {
0int X, ¥, Z;

T/

T

[o

23 _ .
ZEf X = spawn aQ);
el = . concurrently
FE0y = spawn b(); decremcnied
2z =cQ); o Resiore N7
Ssync; - oo EES k| LRSS
E Si Dd hase starts.
return X + y + Z; econd phase starts.

b

Listing 4: Spawning function anatomy wrt. , N and N,/

initialised by the runtime system with I, because the sync-
condition counter represents N,’, not N, in the first phase.
This initialisation happens together with the initialisation of
the other members upon entering the spawning function.
shows how our wait-free approach uses IV, as the
initial value of the sync-condition counter. Joining tasks are
atomically decrementing its value, before checking if the sync-
condition holds. Within the first phase, workers will observe a
positive sync-condition counter. Once the control flow reaches
the explicit sync point, the value of N is restored atomically

in the sync-condition counter using Subsequent
checks for the sync-condition will now be based on V.

C. Summoning Synergy Effects

A runtime system of a concurrency platform is a multi
layered structure, with the work-stealing queues at its core.
The layer wrapping this core is responsible for coordinating
the concurrent strands. Most runtime systems use lock-based
synchronisation within the outer layer, and the partially-
locked THE queue at the core. Nowa removes the locks of
the outer layer with its wait-free approach. As a result, all
parallel strands can instantaneously and simultaneously break
through the outer layer towards the core, where they face the
work-stealing queue. To avoid those queues from becoming
a bottleneck, we also use a highly-optimised variant of the
CL queue within the Nowa runtime system. As explained
in [Section II-Al unlike the typically used THE queue, the
CL queue is completely lock-free. Ultimately, due to the
combination of the wait-free Nowa approach and the lock-free
CL queue, a synergy effect manifests.

V. EVALUATION

We implemented Nowa in a runtime system and compared
Nowa with Fibril, Cilk Plus, and TBB. We used Fibril as
starting point for Nowa, so the comparison with Fibril shows
the direct impact of our wait-free approach. Cilk Plus and TBB
are state of the art concurrency platforms and, therefore, put
the performance of Nowa into context.

The twelve benchmarks described in [Table 1| were used to
evaluate and compare the performance of Nowa, Fibril, Cilk
Plus and TBB. These benchmarks have been used in previous
publications about the cactus stack problem and Cilk and are
adopted from Fibril. The source lines of code (SLOC) were
counted using D. Wheeler’s SLOCCount tool.

Benchmark Input Description SLOC
cholesky 4000,/40000 Cholesky factorization 454
fit 226 Fast Fourier transformation 3054
fib 42 Recursive Fibonacci 40
heat 4096 x 1024 Jaccobi heat diffusion 149
integrate 104 (¢ = 107°) Quadrature adaptive integration 59
knapsack 32 Recursive knapsack 164
Iu 4096 LU-decomposition 269
matmul 2048 Matrix multiply 114
nqueens 14 Count ways to place N queens 48
quicksort 108 Parallel quicksort 66
rectmul 4096 Rectangular matrix multiply 291
strassen 4096 Strassen matrix multiply 621

Table I: Description of the 12 benchmarks

All benchmarks were run on a NUMA system with two
AMD EPYC 7702 CPUs at 2.00 GHz with boost enabled
up to 3.35 GHz. Each CPU package has its own NUMA-
node and 64 cores with 2-way simultaneous multithreading
(SMT), totaling 256 hardware threads. The total available main
memory was 503 GiB. The evaluation was performed using
Ubuntu Linux 18.04 with kernel version 4.15.0, GCC 7.5.0,
Intel Cilk Plus RTS 7.4.0, and TBB 2017 Update 7. All code
was compiled with -02, as the effects of a higher optimization
level are often indistinguishable from random noise [21]]. The
execution time measurements were performed from within
the applications to avoid the inclusion of OS and loader
induced process ramp-up time. Furthermore, we ensured that
the system was quiescent during the measurements.

We used the unmodified benchmarks from Fibril except
for knapsack and strassen. In knapsack a bug was fixed
that resulted in a minimal problem size after the first run.
And in strassen the serial portion was reduced and dynamic
memory allocations were replaced by preallocated memory to
minimise deviations due to memory management outside the
runtime system’s control. Nowa and Fibril were adjusted to
not unmap unused stack space, due to stack frame suspension,
using madvise (). This adjustment allows for a fair comparison
with Cilk Plus, OpenMP and TBB, which do employ this
technique. Furthermore, our results in question
the worthwhileness of this technique.

The evaluation was performed using 4 KiB memory
pages and 1 MiB stacks. Besides the execution time us-
ing n threads (7;,), we also measured the serial execution
time (7's) using the serial elision [5] of every benchmarked
application. For every combination of n (respectively S) and
runtime system, we ran the benchmark 51 times in total,
with the first run being a warm-up run. To compare the
runtime systems via their speedup values, we calculated the 50
serial executions’ arithmetic mean per benchmark (Ts). This
mean serial execution time is used to determine 50 speedup
values (7L ---.#50) for each runtime and benchmark using
n threads, that is:

m_ Ts
S = Tm
From those, we finally calculate the speedup’s geometric

mean %, and standard deviation, shown as line point and

Cilk Plus —— TBB
fft (Ts = 16.916 + 0.051 5)

—+— Nowa —=— Fibril —e
cholesky (Ts = 7.405 + 0.216s)

e /I\
. | \
20 - / e 60 Y g = = =S T——
/. . o+ " O %o 400 - s %1
10/95—° L/
/ 20 -/
/, B e /
o= I I I 0 I I I I
fib (T's = 0.994 & 0.0255s) heat (Ts = 0.757 £ 0.089 s)
20 - : _
I""‘/{ 6 . — . 3
15 = A — { e i;
/ ~— @ —
10| R e e / S S
21/
51 -] : ° ® ® °®
0 /;/ . S N 0 [| | | |
integrate (Ts = 2.959 + 0.003 s) knapsack (T's = 0.385 & 0.060s)
80 [60
60 - ;”I
}} Loal 40 - W %
40 | 4L -
0 = = R L
2 % 1 5 o *° 20 1 * ?
/{ | —— _ ""'r 1
E‘ 0 A e O e 0 = T 1 | |
= _ _
3 Iu (Ts = 15.561 £ 0.157s) matmul (Ts = 9.449 4+ 0.146s)
=3
“ 60| s—F——&| 60| st
¥ 5 % 5 5 A
40 - - 40 + —
,i/° N :777E~t—;—§ /l: = - ® ® ®
20 :/«** 20 —/: =, °
0 L L L L L A=A 4
nqueens (T's = 5.004 £ 0.001 s) quicksort (I's = 11.542 4+ 0.007 s)
100 10 [
— #i ! | |
- -] x =
& I~ g
50 - e — s F4 3 5 ¥ ¥
— _— . oo & o ¢ o o
~ » oo
® A
0 ,/i————#**:"’fA | I 0 I I I I
rectmul (T's = 20.314 & 0.039s) strassen (T's = 14.193 £ 0.005s)
80
F = - g
00— 60 B —s
60 |- 7 &
¥ I 7& 40 |- /5778
I e e
20 - /i - 20 | & A k& A&
0 / 1 1 1 1 0 / 1 1 1 1
64 128 192 256 64 128 192 256
Threads

Figure 7: Speedup using 1-256 hardware threads

error bars in the graphs. Since we take the identical value
for the serial execution in the speedup calculation across all
runtime systems, the derived speedup values are comparable
between the runtime systems. A higher speedup of a runtime
A than runtime B also denotes a lower execution time than B.
Hence, when we provide values for the average performance
changes between runtime systems, we calculate the geometric
mean of the speedup ratios of the related runtime systems.

A. Comparison of Runtime Performance

shows a comparison of the speedups achieved by
Nowa, Fibril, Cilk Plus, and TBB on 1-256 threads. Nowa

performs very similar to Fibril on 256 threads in cholesky, fft,
heat, lu, quicksort, rectmul, and strassen, indicating that the
benchmark itself or the data processed might be the bottleneck
in these benchmarks. In the case of cholesky, the achieved
speedup drops down from around 28 on 128 threads to about
20 on 256 threads. Tests have shown that this benchmark

relies heavily on allocating and deallocating the stacks used
to compute the work. Nowa and Fibril use small per worker
buffers of stacks and a global pool to recirculate stacks that
changed ownership in the course of work-stealing. When put
under stress by many workers, this single global pool can
become a bottleneck and limit the achievable speedup. Im-
provements to the pool can dampen performance derogation in
such instances. Furthermore, Nowa achieved speedups roughly
comparable to Cilk Plus in fft, rectmul, and strassen, and to
TBB in quicksort, on 256 threads.

The knapsack benchmark is the only benchmark where
Nowa performed significantly worse than Fibril, Cilk Plus, and
TBB. On 256 threads, the performance of Nowa was 0.36 x
that of Fibril, 0.63 x that of Cilk Plus, and 0.21 x that of TBB.
However, this benchmark tries to solve the 0/1 knapsack prob-
lem by employing a branch-and-bound technique. Hence it
spawns a new task for every branch to traverse the branches of
the search tree recursively. To bound the number of traversed
branches, the recursion stops at branches where an approxi-
mation shows that no better result than the current best can be
found. Therefore, the required work until the algorithm stops
(and thus, the execution time) depends heavily on the executed
tasks’ ordering. As explained in the employed
work-stealing strategy influences the ordering. For example,
TBB uses child-stealing and executes forked-off functions in
reverse order. Once we switch the order of spawn statements
in knapsack’s source code, the continuation-stealing runtime
systems, including Nowa, outperform TBB. That means that
knapsack would benefit from a code annotation hinting the
concurrency platform which strand of execution to prefer after
a spawn. It is, to our knowledge, the only benchmark from the
evaluated benchmark suite where this is the case. Nevertheless,
for comparison, we decided to show the results using the initial
order of spawn statements. The random nature of randomised
work-stealing also influences executed tasks’ ordering and
leads to high variance of run-time in this benchmark. We also
found that the memory layout of the knapsack executable has a
tremendous impact on performance, changing the benchmark’s
run-time by up to an order of magnitude.

Nowa outperforms Fibril on 256 threads in fib, integrate,
matmul, and nqueens by 1.62 x, 1.37 x, 1.29 x, and 1.64 X,
respectively. In the fib, integrate, and nqueens benchmarks,
the work of a created task is very small, and there is no shared
data, making the runtime system the limiting factor of the
achievable speedup. Because of this, it is a useful tool for
measuring the performance of the runtime system itself.

On average, Nowa improves performance by 1.06 X com-
pared to Fibril, by 1.5 x compared to Cilk Plus, and by 3.02 x
compared to TBB, on 256 threads. Since we find knapsack to
be ill-suited as a benchmark, excluding the results of knapsack
from calculating the average performance differences between
runtime systems is more conclusive. Therefore, we exclude
knapsack form now, when providing the average speedup ratio
of two runtime systems. Without the knapsack benchmark, the
average speedup increase achieved by Nowa over Fibril, Cilk
Plus, and TBB is 1.17 x, 1.62 x, and 3.84 X, respectively.

—+— Nowa w/o madvise() —=— Nowa w/ madvise() —e— Cilk Plus
cholesky (Ts = 7.405 4+ 0.216 5) Iu (Ts = 15.561 & 0.157s)

/‘* = -, 60 /;/’Pi —3
20 - —+—% s
“laof 7 % = . ©e
/ s %0 o o = -
10 /5% /s p———
/e . 20/
/ i ——
L I I I | 0 (I I |
heat (Ts = 0.757 + 0.089s) fib (T's = 0.994 & 0.025s)
20 -
s = =
4+ f—a—3g 3§ P o
10 —
| |
2y 5 m P °
E‘ 0 | | | | 0 L ° | | |
3 matmul (Ts = 9.449 + 0.146 5) nqueens (Ts = 5.004 £ 0.001s)
2 100 [
2 60t % ot
T m—m—m &= u
40 - i' A/"i/
//i»""l . eo—e 50 - —— .
20 Pl = " oo °
/@ ° o
0 L L L L 0 * L L L
integrate (Ts = 2.959 + 0.003 s) rectmul (Ts = 20.314 + 0.039s)
80 F T 1 80 —
60 - T:a: 60 |- a/! =
40 T - wp AT
T - P '
200 & ="t 20 /
/ L
O ° | | | | 0 | | | |
64 128 192 256 64 128 192 256
Threads

Figure 8: Comparison of the impact of madvise()

Furthermore, the minimum and maximum performance of
Nowa was 0.99 x and 1.64 x the performance of Fibril, 1.01 x
and 3.47 x the performance of Cilk Plus, and 1.16 x and
25.3 x the performance of TBB.

B. Analysis of the Practical Cactus-Stack Solution

Yang et al. [9] presented a practical solution to the cactus-
stack problem by instructing the kernel to free the physical
page backing of the unused portion of a suspended stack.
This is done using the madvise() syscall with the proper
advice argument, MADV_ DONTNEED or MADV_ FREE in the case
of Linux. The original results of the empirical study published
by Yang et al., suggested that the use of madvise() with
MADV_DONTNEED has no significant impact on performance.

This stands in contrast with our findings. As they are
indicating that the use of madvise() is associated with a,
in some benchmarks, significant, performance penalty. Even
the use of MADV_ FREE, which allows the kernel to free pages
lazily, only improves this by a small margin. shows
a comparison of the performance of Nowa with and without
the use of madvise() with MADV_ FREE. The speedup of Cilk
Plus is added for reference. The benchmarks cholesky and
Iu showed the highest performance derogation of 0.18 x and
0.39 x, respectively. On average, the performance decreased
by 0.73 x. Repeating the experiment with Fibril showed
similar results with average performance decrease of 0.75 X.

As shown in the use of madvise() only lowers
memory consumption slightly. Considering the harmful impact
on performance, the low memory savings in our benchmarks

Max RSS (MiB)

Benchmark madvise()X madvise() A RSS
cholesky 117 109 -8
fft 2,073 2,073 0
heat 82 82 0
Iu 146 145 —1
matmul 63 65 2
quicksort 785 783 -2
rectmul 3,831 3,773 —58
strassen 7,638 7,638 0
fft, integrate, 7 7 0

knapsack, nqueens

Table II: RSS usage of Nowa wrt. the use of madvise()

—+— Nowa (CL queue) = Nowa (THE queue) e Fibril
cholesky (Ts = 7.405 + 0.216 5)

fib (Ts = 0.994 £ 0.0255)

20

e S — —2
200 — = 3 " 15 s
/| 10 e —r"
10 /3 - A ot
/,/ 9 p T B
% 0 I I I I 0 il I I I
= - _
2 nqueens (T's = 5.004 =+ 0.001 s) matmul (Ts = 9.449 £ 0.146 s)
~100
i 3] 60 s
= 7 a
e ol ,,r/ a1
50 | - — - " l: - "
e = 20F » =
/I " =
0 il | | | | | | | |
64 128 192 256 64 128 192 256
Threads

Figure 9: Comparison of the CL queue versus THE queue

and the fact that modern systems have plenty of available
main memory, we wonder whether the benefits of unmapping
unused stack space justifies its disadvantages.

C. The Work-Stealing Queue’s Impact on Performance

As explained in [Section IV-C| Nowa generates synergy

effects by combining the wait-free approach with the CL work-
stealing queue. To investigate the impact of this synergy, we
created a second variant of Nowa which uses the THE queue,
just like Fibril, instead of the CL queue, but otherwise still
employs the wait-free Nowa approach for strand coordination.
We then ran the benchmarks with those two Nowa variants.
shows an excerpt of the results of this comparison.
If Nowa is using the THE queue, then the performance is
comparable to Fibril’'s. However, as soon as Nowa makes
use of the CL queue, the proper performance potential is
unlocked in most benchmarks. For some benchmarks, like
fib, this may even account for a performance increase of up
to 1.72 x. Generally, the performance of our Nowa runtime
system using the THE queue was similar to Fibril, or even
decreased slightly. This decrease is an indication that the
THE queue becomes the bottleneck. However, only the wait-
free aspect of our Nowa approach allows the use of the fully
lock-free CL queue, which would not be possible without it,
thus, removing the bottleneck and unleashing performance.

D. Applicability

Besides Fibril [9], where our approach is applicable since
we use Fibril’s source code as the starting point for Nowa,
we examined Intel’s Cilk Plus runtime system [7|] as per
revision 39ad152ﬂ and MIT’s OpenCilk [6] Cheetah runtime
as per revision cb3d27 Both runtimes use a similar locking
approach as Fibril. Therefore we conclude that the scalability
of both runtime systems is limited due to the lock and that
they would benefit from our wait-free approach.

E. Comparison with OpenMP

As it is a dominant concurrency platform, especially in
HPC, we also compared Nowa against OpenMP tasks. For
this, we modified the benchmarks to use the omp task and
omp taskwait pragmas, as spawn/fork respectively sync/join
primitives.

We included two OpenMP runtime systems in our evalua-
tion: 1ibgomp from GCC 7.5.0 and 1ibomp from Clang 11.1.0.
Every benchmark was compiled with GCC, allowing a fair
comparison between all OpenMP and non-OpenMP runtime
systems. In the case of 1ibomp, this means that we instructed
GCC to link against 1ibomp. Due to the increased execution
times when using libgomp, we reduced the number of suc-
cessive benchmark runs to 13, including one warmup run, and
report the values of those 12 runs (instead of 50 + 1 runs).
Furthermore, we only examined the execution times using 1,
64, 128, 192, and 256 hardware threads to keep the overall
time to carry out the evaluation within reasonable bounds.

To mimic Nowa’s and Fibril’s runtime systems’ behaviour,
we extended the omp task construct by the untied clause.
Most continuation-stealing runtime systems do no restrict
the target thread after a task’s suspension, hence avoiding
starvation scenarios. To show the impact of tied and untied
tasks, we also evaluated libomp using tied tasks.

puts the two OpenMP runtime systems’ perfor-
mance in perspective with the already presented execution
times from Nowa and TBB. Unlike we decided to
use a logarithmic scale for the plots. Mainly to accommodate
libgomp’s performance, which is consistently low, often ex-
hibiting a speedup below one. While libomp does better in
terms of speedup, it is slightly below the speedup achieved by
TBB. Especially when tied tasks are used, 1libomp is elevated
into the performance region of TBB in case of cholesky, fft,
matmul, and rectmul. Only in strassen libomp outperforms
TBB. For 7 of the 12 benchmarks, using tied tasks seems to
improve the performance significantly, even though them being
tied to a thread limits the freedom of the runtime system’s
scheduler. In the case of strassen, libomp using tied tasks
comes close to the speedup of Nowa.

The only benchmark where an OpenMP runtime system is
able to outperform Nowa is quicksort, which could be due
to scheduling artefacts (similar to the case of knapsack). But
on average, Nowa is 8.68 x, faster compared to 1ibomp using
untied tasks, and 5.47 x when using tied tasks.

3bitbucket.org/intelcilkruntime/intel-cilk-runtime, 39ad15 2018-01-24
4github.com/OpenCilk/cheetah cb3d27 2020-08-29

https://bitbucket.org/intelcilkruntime/intel-cilk-runtime
https://bitbucket.org/intelcilkruntime/intel-cilk-runtime/commits/39ad15ad8e5665bd8dd433d389fdd31ef55ab2af
https://github.com/OpenCilk/cheetah
https://github.com/OpenCilk/cheetah/commit/cb3d271894fed40e7efeee38f7e7f44b584ed

10t
10°

1071

1072

10!

1071

10—3

—+— Nowa —m— TBB —e— libgomp —— libomp (untied) —— libomp (tied)
fft (T's = 16.916 4 0.051s)

cholesky (T's = 7.405 = 0.2165)

A,

fib (Ts = 0.994 £ 0.0255)

L —

E

1095

100

integrate (Ts = 2.959 & 0.003 s)

10705

10%
10*
100

g. 10~1
E . Iu (Ts = 15.561 £ 0.157s) matmul (Ts = 9.449 + 0.146'5)
% 10 PR o 102 [/,,/v"
10! n
10°
102
100 100 }/
1()72 L I I .? 1071 | Il \' .f
rectmul (Ts = 20.314 £ 0.039's) strassen (T's = 14.193 4 0.005s)
102 [T
"i‘ﬂ
10* 10
10°
? ? .? 100 Il Il Il
64 128256 64 128256
Threads
Figure 10: Nowa compared against OpenMP
OpenMP (1ibomp)

Nowa untied tasks tied tasks
cholesky 0.37 £0.01s 4.28 £0.06s 1.66 £0.01s
fft 0.32 £0.07s 0.71 £0.03s 0.45+0.02s
fib 0.05+0.01s 6.30 £0.13s 2.86 £0.04s
heat 0.14 £0.01s 0.20 £0.01s 0.25+0.01s
integrate 0.05+0.01s 2.37+0.21s 2.33+0.36s
knapsack 0.04 £0.01s 0.09 £0.02s 0.09 £0.03s
Iu 0.26 £0.02s 2.09 £0.10s 1.64 +£0.06s
matmul 0.15+0.00s 15.414+0.27s 2.85+0.11s
nqueens 0.06 £0.01s 1.07 £0.03s 1.32+0.11s
quicksort 1.98 £0.07s 1.71 £0.04s 1.81 £0.05s
rectmul 0.30 £0.03s 0.98 £0.54s 0.44 +0.04s
strassen 0.24 £0.01s 0.62 £0.03s 0.2940.02s

Table III:

Execution times using 256 hardware threads

To provide a more in-depth insight into the effects of untied
and tied tasks, we show in the average execution
times and their standard deviations of Nowa and libomp with
untied and tied tasks using 256 hardware threads. For fib, one
of the most challenging benchmarks for a runtime system,
Nowa is 116.69 x faster than 1ibomp using untied tasks. The
time libomp requires to execute fib more than halves once
we switch from untied to tied tasks. Nevertheless, even when
using tied tasks, Nowa can execute fib 52.92 x faster than
libomp. It is also worth noting that for some benchmarks, like
heat, nqueens, and quicksort, using libomp with tied tasks
increases the execution time compared to united tasks.

The evaluation reveals that 1ibgomp has a severe perfor-
mance issue when used with fine-grained task parallelism:
Nowa can achieve 486.93 x the speedup of libgomp, on
average. Despite libomp performing significantly better than
libgomp, potentially due to its internal work-stealing schedul-
ing, both OpenMP runtime systems cannot achieve the perfor-
mance of Nowa, when used for task parallelism.

VI. CONCLUSION

We presented Nowa, a novel wait-free approach to coordi-
nate concurrent strands in concurrency platforms. Nowa was
implemented in a runtime system, which allows for dynamic
task parallelism and can employ the practical solution to the
cactus-stack problem, all strictly wait-free. Contrary to a pre-
vious publication, we find that applying the practical solution
to the cactus-stack problem incurs a significant performance
penalty. Therefore our evaluation raises the question, whether
this solution should be applied at all. Our evaluation shows
that Nowa improves the performance by 1.17 X on average
compared to Fibril, by 1.62 x compared to Cilk Plus, by
3.84 x compared to TBB, by 486.93 x compared to OpenMP
tasks using GCC’s libgomp, and by 8.68 x compared to
OpenMP using Clang’s libomp, on 256 hardware threads.
We further showed that this performance gain is reinforced
by Nowa’s adept combination of its wait-free approach with
a lock-free work-stealing queue implementation based on
relaxed memory orderings. Our analysis shows that existing
concurrency platforms could also benefit from Nowa.

ARTIFACT APPENDIX

The source code of the Nowa runtime system and the used
benchmark suite is available online:

https://gitlab.cs.fau.de/i4/manycore/nowa

It is also available as doi:10.5281/zenodo.4550680. We
explictly welcome feedback and bug reports. Our experiments’
resulting dataset, which is the base for the presented evalua-
tion, is available as doi:10.5281/zenodo.4550676.

ACKNOWLEDGMENT

We thank Andreas Fried (KIT) for his feedback. This work
is partly funded by the Deutsche Forschungsgemeinschaft
(DFG, German Research Foundation) — Project Number
146371743 — TRR 89 Invasive Computing and under grants
SCHR 603/10-2 and NO 625/7-2 (COKE).

https://gitlab.cs.fau.de/i4/manycore/nowa
https://doi.org/10.5281/zenodo.4550680
https://doi.org/10.5281/zenodo.4550676

(1]

(2]

(3]

(4]

(5]

(6]

(71
(8]

(9]

[10]

[11]

[12]

REFERENCES

H.-J. Boehm, “Threads cannot be implemented as a
library”, SIGPLAN Not., vol. 40, no. 6, Jun. 2005. DOI:
10.1145/1064978.1065042.

M. Herlihy, “Wait-free synchronization”, ACM Trans.
Program. Lang. Syst., vol. 13, no. 1, pp. 124-149, Jan.
1991. por: 110.1145/114005.102808.

R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E.
Leiserson, K. H. Randall, and Y. Zhou, “Cilk: An
efficient multithreaded runtime system”, SIGPLAN Not.,
vol. 30, no. 8, Aug. 1995. DOI:|10.1145/209937.209958.
R. D. Blumofe and C. E. Leiserson, “Scheduling mul-
tithreaded computations by work stealing”, J. ACM,
vol. 46, no. 5, Sep. 1999. DOI: |10.1145/324133.324234.
M. Frigo, C. E. Leiserson, and K. H. Randall, “The
implementation of the Cilk-5 multithreaded language”,
in Proceedings of the ACM SIGPLAN 1998 Conference
on Programming Language Design and Implementation,
ser. PLDI 98, Montreal, Quebec, Canada: Association
for Computing Machinery, 1998. DoTI: 10.1145/277650.
277725.

T. B. Schardl, I.-T. A. Lee, and C. E. Leiserson, “Brief
announcement: Open Cilk”, in Proceedings of the 30th
ACM Symposium on Parallelism in Algorithms and
Architectures, ser. SPAA 18, Vienna, Austria: Asso-
ciation for Computing Machinery, 2018. DOI: 10.1145/
3210377.3210658.

Intel. “Intel Cilk Plus”. (2020), [Online]. Available:
http://www.cilkplus.org.

P. Charles, C. Grothoff, V. Saraswat, C. Donawa, A.
Kielstra, K. Ebcioglu, C. von Praun, and V. Sarkar,
“X10: An object-oriented approach to non-uniform
cluster computing”, SIGPLAN Not., vol. 40, no. 10, Oct.
2005. pOT: 110.1145/1103845.1094852.

C. Yang and J. Mellor-Crummey, “A practical solution
to the cactus stack problem”, in Proceedings of the
28th ACM Symposium on Parallelism in Algorithms and
Architectures, ser. SPAA °16, Pacific Grove, California,
USA: Association for Computing Machinery, 2016.
DOTI: [10.1145/2935764.2935787.

F. Schmaus, S. Maier, T. Langer, J. Rabenstein, T.
Honig, W. Schroder-Preikschat, L. Bauer, and J. Henkel,
“System software for resource arbitration on future
many-* architectures”, in 2020 IEEE International Par-
allel and Distributed Processing Symposium Workshops
(IPDPSW), May 2020. pot: 10.1109/IPDPSW50202.
2020.00160.

A. Robison, “A primer on scheduling fork-join paral-
lelism with work stealing”, The C++ Standards Com-
mittee, Tech. Rep., WG21 paper N, vol. 3872, 2014.
E. A. Hauck and B. A. Dent, “Burroughs’ B6500/B7500
stack mechanism”, in Proceedings of the April 30—May
2, 1968, Spring Joint Computer Conference, ser. AFIPS
’68 (Spring), Atlantic City, New Jersey: Association for

Computing Machinery, 1968. DOI: 10.1145/1468075.
1468111.

L-T. A. Lee, S. Boyd-Wickizer, Z. Huang, and C. E.
Leiserson, “Using memory mapping to support cactus
stacks in work-stealing runtime systems”, in Proceed-
ings of the 19th International Conference on Parallel
Architectures and Compilation Techniques, ser. PACT
10, Vienna, Austria: Association for Computing Ma-
chinery, 2010. DoOI: [10.1145/1854273.1854324.

T. B. Schardl, W. S. Moses, and C. E. Leiserson,
“Tapir: Embedding fork-join parallelism into LLVM’s
intermediate representation”, in Proceedings of the 22nd
ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming, ser. PPoPP ’17, Austin, Texas,
USA: Association for Computing Machinery, 2017.
DOI: 10.1145/3018743.3018758.

U. A. Acar, N. Ben-David, and M. Rainey, “Contention
in structured concurrency: Provably efficient dynamic
non-zero indicators for nested parallelism”, SIGPLAN
Not., vol. 52, no. 8, Jan. 2017. DoOI: [10.1145/3155284.
3018762.

N. S. Arora, R. D. Blumofe, and C. G. Plaxton, “Thread
scheduling for multiprogrammed multiprocessors”, in
Proceedings of the Tenth Annual ACM Symposium on
Parallel Algorithms and Architectures, ser. SPAA ’98,
Puerto Vallarta, Mexico: Association for Computing
Machinery, 1998. DoOI: 10.1145/277651.277678.

D. Chase and Y. Lev, “Dynamic circular work-stealing
deque”, in Proceedings of the Seventeenth Annual ACM
Symposium on Parallelism in Algorithms and Archi-
tectures, ser. SPAA 05, Las Vegas, Nevada, USA:
Association for Computing Machinery, 2005. Dor: 10.
1145/1073970.1073974.

N. M. Lg, A. Pop, A. Cohen, and F. Zappa Nardelli,
“Correct and efficient work-stealing for weak memory
models”, SIGPLAN Not., vol. 48, no. 8, Feb. 2013. DOI:
10.1145/2517327.2442524.

B. Norris and B. Demsky, “CDSchecker: Checking
concurrent data structures written with C/C++ atomics”,
SIGPLAN Not., vol. 48, no. 10, Oct. 2013. DpOTI: [10.
1145/2544173.2509514.

P. Ou and B. Demsky, “Checking concurrent data struc-
tures under the C/C++11 memory model”, SIGPLAN
Not., vol. 52, no. 8, Jan. 2017. DoOI: |10.1145/3155284.
3018749.

C. Curtsinger and E. D. Berger, “Stabilizer: Statistically
sound performance evaluation”, in Proceedings of the
Eighteenth International Conference on Architectural
Support for Programming Languages and Operating
Systems, ser. ASPLOS ’13, Houston, Texas, USA: As-
sociation for Computing Machinery, 2013, pp. 219-228.
DOI: 10.1145/2451116.2451141.

https://doi.org/10.1145/1064978.1065042
https://doi.org/10.1145/114005.102808
https://doi.org/10.1145/209937.209958
https://doi.org/10.1145/324133.324234
https://doi.org/10.1145/277650.277725
https://doi.org/10.1145/277650.277725
https://doi.org/10.1145/3210377.3210658
https://doi.org/10.1145/3210377.3210658
http://www.cilkplus.org
https://doi.org/10.1145/1103845.1094852
https://doi.org/10.1145/2935764.2935787
https://doi.org/10.1109/IPDPSW50202.2020.00160
https://doi.org/10.1109/IPDPSW50202.2020.00160
https://doi.org/10.1145/1468075.1468111
https://doi.org/10.1145/1468075.1468111
https://doi.org/10.1145/1854273.1854324
https://doi.org/10.1145/3018743.3018758
https://doi.org/10.1145/3155284.3018762
https://doi.org/10.1145/3155284.3018762
https://doi.org/10.1145/277651.277678
https://doi.org/10.1145/1073970.1073974
https://doi.org/10.1145/1073970.1073974
https://doi.org/10.1145/2517327.2442524
https://doi.org/10.1145/2544173.2509514
https://doi.org/10.1145/2544173.2509514
https://doi.org/10.1145/3155284.3018749
https://doi.org/10.1145/3155284.3018749
https://doi.org/10.1145/2451116.2451141

	Introduction
	Background
	Work-Stealing Queues
	Child-Stealing versus Continuation-Stealing
	The Cactus-Stack Problem
	Related Work

	Continuation-Stealing Concurrency Platforms
	The DAG Model of Continuation-Stealing
	Dynamic Strand-to-Worker Mapping
	The Data Race between Worker and Thieves

	Wait-Free Synchronisation of Strands in Concurrency Platforms
	Decomposition of
	The Wait-Free Approach
	Summoning Synergy Effects

	Evaluation
	Comparison of Runtime Performance
	Analysis of the Practical Cactus-Stack Solution
	The Work-Stealing Queue's Impact on Performance
	Applicability
	Comparison with OpenMP

	Conclusion

