
Extensible Distributed Coordination

Tobias Distler1 Christopher Bahn1 Alysson Bessani2 Frank Fischer1 Flavio Junqueira3

1Friedrich–Alexander–Universität 2Faculdade de Ciências/LaSIGE 3Microsoft Research
Erlangen–Nürnberg (FAU) Universidade de Lisboa Cambridge

Abstract
Most services inside a data center are distributed systems
requiring coordination and synchronization in the form of
primitives like distributed locks and message queues. We
argue that extensibility is a crucial feature of the coordina-
tion infrastructures used in these systems. Without the abil-
ity to extend the functionality of coordination services, ap-
plications might end up using sub-optimal coordination al-
gorithms, possibly leading to low performance. Adding ex-
tensibility, however, requires mechanisms that constrain ex-
tensions to be able to make reasonable security and perfor-
mance guarantees. We propose a scheme that enables ex-
tensions to be introduced and removed dynamically in a se-
cure way. To avoid performance overheads due to poorly
designed extensions, it constrains the access of extensions
to resources. Evaluation results for extensible versions of
ZooKeeper and DepSpace show that it is possible to increase
the throughput of a distributed queue by more than an order
of magnitude (17x for ZooKeeper, 24x for DepSpace) while
keeping the underlying coordination kernel small.

Categories and Subject Descriptors C.2.4 [Computer Sys-
tems Organization]: Distributed Systems; D.4.5 [Operating
Systems]: Reliability

General Terms Design, Algorithms, Performance

Keywords Coordination Services, Extensibility, Distribut-
ed Algorithms, ZooKeeper, DepSpace

1. Introduction
Modern Web-scale services are complex and difficult to de-
sign and maintain. Part of such complexity comes from sat-
isfying scalability and fault tolerance; the latter implies the

c© Distler et al. 2015. This is the author’s version of the work. It is posted here
for your personal use. Not for redistribution. The definitive version was published in
Proceedings of the 10th European Conference on Computer Systems (EuroSys ’15).
EuroSys’15, April 21–24, 2015, Bordeaux, France.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3238-5/15/04. . . $15.00.
http://dx.doi.org/10.1145/2741948.2741954

use of sophisticated distributed protocols that are notoriously
hard to implement correctly [17, 20, 58]. Coordination ser-
vices have been proposed and applied to provide such func-
tionality while exposing simpler interfaces [3, 5, 14, 17, 31].

In a nutshell, coordination services provide a consistent
and highly-available data store with enough synchroniza-
tion power [29] for client processes to execute fundamen-
tal tasks, such as mutual exclusion and leader election, and
to store important system configuration. Such clients are of-
ten service processes deployed on clusters of hundreds or
thousands of servers. Two key features of coordination ser-
vices explain their success: (1) the fact that they provide
a trust anchor for a much larger distributed system, using
robust implementations of state machine replication proto-
cols [35, 39, 46] to avoid any single point of failure; and
(2) their accessible and limited interface, also called coor-
dination kernel [31], which can be accessed through simple
remote procedure calls (RPCs) that are intuitive even for pro-
grammers who are not experts in distributed computing [17].

Although simplifying usage, limited coordination kernels
have a significant drawback: being confined to a particular
set of primitives, more complex coordination tasks (e.g., dis-
tributed queues) have to be implemented as a combination of
multiple RPCs, following coordination recipes [31], which
is in general not optimal with respect to performance. For
example, due to ZooKeeper [31] not providing a primitive to
update the value of a data node based on its current value,
such an operation must be realized using a read that is fol-
lowed by a conditional write, which leads to poor perfor-
mance under contention. Such deficiencies are an inherent
property of limited coordination kernels (see §2). One way
to address this issue would be to increase the size of kernels
by adding new primitives. However, this would also mean to
lose the benefits of limited interfaces discussed above.

In this paper, we therefore follow a different approach:
to make coordination services extensible. For this purpose,
we present a model that allows clients to dynamically and
securely extend a coordination service by introducing small
pieces of custom code, which are executed atomically at
the server side (see §3). In addition, we devise a sandbox
for constraining such extensions in a way that they do not
degrade or disrupt the performance of the system (see §4).

In order to show the flexibility of our model, we imple-
mented it in two rather different state-of-the-art coordina-
tion services: ZooKeeper [31] and DepSpace [14] (see §5).
ZooKeeper provides a hierarchical namespace with se-
quencer capabilities; it uses the primary-backup approach
to tolerate crashes [16], in which all state updates are pro-
cessed by a master replica and then disseminated to the back-
ups. In contrast, DepSpace implements an augmented tuple-
space service with “test-and-set-like” operations; resilience
against Byzantine faults is ensured using state machine repli-
cation [13, 52], in which all operations are ordered by a
Byzantine fault-tolerant protocol and executed deterministi-
cally by all correct replicas. The systems have quite differ-
ent targets: ZooKeeper aims for read scalability (i.e., adding
replicas increases the read throughput of the system) while
DepSpace is designed for untrusted environments, thus im-
plementing several access control mechanisms to cope with
malicious clients.

We evaluate our approach by reimplementing several co-
ordination recipes in our extensible versions of ZooKeeper
and DepSpace (see §6). The results show performance gains
of more than an order of magnitude for crucial coordination
mechanisms such as shared counters and distributed queues
when using extensions, while the underlying coordination
kernel remains small. Perhaps equally important, extensibil-
ity enables new use cases for coordination services, for ex-
ample, as a basis for load balancing in software-defined net-
works or as storage for file-system metadata (see §7).

Although extensions have been applied to many kinds of
systems both for improving performance and enriching their
features (e.g., [9, 11, 42, 50]), to the best of our knowledge,
no previous work discussed the extensibility of coordination
services and its implications (see §8). A key insight of this
work is that extensions bring performance benefits for clients
as well as servers: with extensions executing multiple oper-
ations atomically, most coordination tasks require clients to
make only a single RPC to the server. As a result of clients is-
suing fewer RPCs and extensions being small pieces of code
with negligible effect on processing load, servers can pro-
vide better throughput.

In summary, the key contributions of this work are:

1. A model for extensible coordination services and its im-
plementation in two systems, ZooKeeper and DepSpace.

2. A sandboxing mechanism for constraining extensions
that protects servers against misbehaving extensions.

3. A set of extension-based coordination recipes providing
support for a shared counter, a distributed queue, a dis-
tributed barrier, and leader election, which show signifi-
cantly better performance than the state of the art.

All source code for the extensible versions of ZooKeeper
and DepSpace together with the extension-based recipes
used in the paper are publicly available via our project web-
site at http://www4.cs.fau.de/Research/EDC/.

2. Background and Problem Statement
In recent years, several coordination services have been pro-
posed [6, 14, 17, 31, 44] to facilitate the implementation of
coordination tasks such as locking, leader election, and mes-
sage ordering. These services are also often used for storing
configuration [17, 31] or metadata [12]. Each of these ser-
vices provides different programming interfaces, also called
coordination kernels, that applications can use for running
coordination tasks, following some recipes [31].

Background. Independently from the specifics of the sup-
ported coordination kernel and underlying implementation
details, coordination services implement three main features:

• Highly-available small storage: The coordination service
is often an anchor of trust in a much bigger distributed
system and, amongst other things, is responsible for reli-
ably managing small chunks of important data. Thus, it
must be fault tolerant, which is usually achieved based on
state machine replication [52].

• Interface with synchronization power: Coordination tasks
usually can be reduced to the problem of consensus [48].
To solve this problem, simple read/write (or put/get) op-
erations are not enough [43]; more powerful primitives
are necessary. Some older systems rely on the lock/lease
abstraction [17, 44], which is not wait-free since a client
that fails with the lock can block other clients, at least
for some time, until its lease expires. More recent sys-
tems provide transactions [6] or even wait-free opera-
tions [14, 31] based on primitives with infinite synchro-
nization power [30].

• Client failure detection: For implementing important co-
ordination tasks such as leader election and fault-tolerant
task assignment, it is essential that clients learn about the
failure of other clients. Some systems explicitly provide
such failure detection (e.g., by maintaining client ses-
sions and notifying registered clients when such sessions
terminate [5, 31]), while others enable the expiration of
objects, which can be interpreted as failures of the clients
responsible for renewing the objects’ time to live [3, 14].

Table 1 summarizes the main characteristics of several
coordination services proposed in recent years. The table
shows that these services provide different abstractions with
regard to their data model and synchronization power.

Problem Statement. One important limitation of these sys-
tems is that their coordination kernels suit some coordination
tasks better than others. For example, implementing mutual
exclusion with Chubby is trivial since it already provides
lock objects. In contrast, the best practice for acquiring a
lock in ZooKeeper is to create a sequential node and to set a
watch to the adjacent node with a smaller sequence number.
This corresponds to three RPCs to the service while Chubby
requires just one. On the other hand, adding an element to
a queue can be performed very efficiently in ZooKeeper but

http://www4.cs.fau.de/Research/EDC/

System Data Model Sync. Primitive Wait-free
Boxwood [44] Key-Value store Locks No
Chubby [17] (Small) File system Locks No
Sinfonia [6] Key-Value store Microtransactions Yes
DepSpace [14] Tuple space cas/replace ops Yes
ZooKeeper [31] Hierar. of data nodes Sequencers Yes
etcd [3] Hierar. of data nodes Sequen./Atomic ops Yes
LogCabin [5] Hierar. of data nodes Conditions Yes

Table 1. Coordination services and their characteristics.

includes multiple operations on shared locks in Chubby. This
kind of tradeoff is inherent to the choice of synchroniza-
tion primitives. As far as we know there is no “silver bullet”
primitive that would allow the implementation of all coordi-
nation tasks in an optimal way, that is, using a single RPC.

Possible Solutions. A possible solution would be to im-
plement and provide a rich and extensive API with all prac-
tically-relevant primitives. However, this approach presents
two fundamental limitations. First, it is hard to define the
set of operations such API must provide, probably requir-
ing regular changes to account for new uses of the system.
Second, this would create a huge coordination kernel, mak-
ing it difficult for programmers to figure out how to cor-
rectly implement their tasks. A good coordination kernel
is small, elegant, expressive, and stable, providing under-
pinnings for normal programmers to create coordination li-
braries and custom coordination tasks.

Notice that some systems provide extensive libraries of
coordination recipes, which are implemented based on their
respective coordination kernel (e.g., Apache Curator [2] for
Zookeeper). Despite the ease of use of such libraries, the
performance of the coordination tasks are still constrained
by the underlying coordination kernel, as we show in §6.

An entirely different approach is to build custom services
tailored to the specific needs of an application (e.g., as done
in [33]). This way, all coordination tasks can be natively sup-
ported via a single RPC to the service. The basic idea is to
implement a highly-available service with the required in-
terface and features from ground up, based on a consensus
protocol (e.g., Paxos [39], RAFT [46], Zab [35]) or a repli-
cation library (e.g., BFT-SMaRt [13], JZab [4]). The first ap-
proach is time-consuming since reimplementing a replicated
state machine is quite complex [20]. The second approach,
although much simpler than the first, can be extremely error
prone, since ensuring determinism and predictable perfor-
mance in replicated state machines is inherently difficult.

Our Approach. We advocate the use of extensions at the
server side for making (fixed-kernel) coordination services
as efficient as possible for any coordination task. The ob-
jective is to get the best features of fixed-kernel (simple and
expressive programming model) and custom (optimal coor-
dination tasks) coordination services.

3. A Model for Extensible Coordination
In this section, we introduce a conceptual model to discipline
the extensibility of current and future coordination services.

3.1 System Model
A coordination service CS is a stateful service accessed
through a set of operations op1, ..., opn that read or mod-
ify its state S, which consists of a set of data objects. These
operations define the API of the coordination kernel. If an
operation op can change the state S (depending on its pa-
rameters and the actual state) it is called an update, other-
wise it is called a read. The modification of the state by an
update triggers an event v. An extension e = 〈P,A〉 contains
a pattern P and a sequence of operations A that are executed
atomically. The extension is triggered when an operation or
an event matches the pattern P defined for the extension.

3.2 Requirements
Our extension mechanism must satisfy these requirements:

• No changes to the API: A fundamental principle of our
extension model is to not change the coordination kernel.

• Security: An extension should run with the privileges of
the client that has invoked it. To prevent attacks, an exten-
sion should only be executed if a client has acknowledged
the use of the extension, either by registering the exten-
sion itself or by sending an explicit one-time request.

• Bounded resource consumption: Extensions should con-
sume a bounded amount of memory and CPU in order to
not degrade or disrupt system performance as well as to
support performance predictability.

• Determinism: To ensure consistency, extensions in ac-
tively-replicated systems have to be deterministic: given
a state and an operation, applying an extension must
always generate the same reply and resulting state.

3.3 Types of Extensions
We distinguish between two main categories of extensions.
An operation extension is invoked as the direct result of
a client issuing a request to the coordination service. In
contrast, an event extension is executed in reaction to the
state of the coordination service being changed. Extensions
of both types may be combined, as shown in §6.1.4.

Operation Extensions. Operation extensions allow clients
to invoke multiple operations on the coordination service by
using only a single RPC. In the typical use-case scenario,
operations called by the same extension are dependent on
each other (e.g., because they access and/or modify the same
data objects), and a client combines them in order to exploit
atomic execution. Operation extensions offer one key bene-
fit: instead of shipping the data to be processed to the client,
such extensions allow complex operations to be performed
at the server side, directly on the data objects.

1 /∗ Operation and event subscriptions ∗/
2 OPERATIONSUBSCRIPTION[] getOpsSubscriptions();
3 EVENTSUBSCRIPTION[] getEventSubscriptions();

5 /∗ Extension execution ∗/
6 void handleOperation(REQUEST request);
7 void handleEvent(EVENT event);

Figure 1. Basic extension interface.

Execution model: If a client request matches an operation
extension, the call will be made to this extension, instead of
being executed normally by the system. If a request matches
multiple extensions, only the last registered will be executed.

Event Extensions. Event extensions allow clients to cus-
tomize the handling of events including, for example, the
creation, modification, or deletion of a data object. In con-
trast to an operation extension, which replaces a normal op-
eration, an event extension is triggered after an operation is
executed, in response to a change in the service state.

Execution model: Once the system state has changed, all
event extensions registered with the particular change will be
triggered, one after another, in the order of their registration.

3.4 Basic Extension Interface
Extensions must implement the basic interface presented
in Figure 1 in order to be registered with an extensible
coordination service. The interface requires an extension to
provide a set of subscriptions indicating the operations and
events for which the extension is to be executed (L. 2–3).
In general, a subscription may contain any criteria that can
be matched to the characteristics of an operation or event
including, for example, operation and event types, ids of data
objects accessed, and/or contents of operation parameters.

As described in §3.7, if a request matches a subscription
of an extension, the extension is invoked by a call to its
handleOperation method (L. 6), allowing it to perform
complex operations on behalf of the original request. In the
same way, an extension is able to provide a custom reaction
to events by implementing the handleEvent method (L. 7).

Based on this interface, particular extensible coordina-
tion services may use derived interfaces for their extensions
that reflect the specifics of their respective APIs. As a result,
extension programmers may customize the behavior of spe-
cific operations and events directly, as illustrated by the ex-
amples in §6, instead of implementing the generic handle-
Operation and handleEvent methods.

3.5 Extension Manager
Making a coordination service extensible requires additional
functionality at the server side, which is provided by a com-
ponent we refer to as the extension manager. A replica of the
extension manager is integrated with each replica of an ex-
tensible coordination service. The extension manager’s main

tasks include handling the lifecycle of extensions (i.e., regis-
tration and deregistration – see §3.6) as well as the execution
of extensions (see §3.7). For this purpose, the extension man-
ager must be able to intercept and (when necessary) suppress
or modify the requests received by and events occurring on
its local replica. In §5.1 and §5.2 we present details on how
this can be ensured for different coordination services.

Initially, only a single built-in extension is registered with
the service: it allows clients to communicate with the exten-
sion manager by invoking standard operations on a special
data object (e.g., /em) that represents the extension manager.

3.6 Extension Registration and Deregistration
Meeting the requirement of §3.2, registration and deregistra-
tion of extensions are performed using the standard API of
the coordination service, without adding new operations to
the service interface: to register an extension, a client issues
a standard create operation for the extension manager’s data
object, passing the extension code as well as additional rele-
vant information (e.g., the extension name) as data.

When the extension manager intercepts the call, it ver-
ifies, compiles, and instantiates the extension and retrieves
the extension’s operation and event subscriptions. Further-
more, the extension manager adds a new data object (e.g.,
/em/ext for an extension named ext) to the coordination
service state, which from then on acts as a surrogate of the
extension. Note that this approach has two main benefits.
First, a client is able to deregister an extension by issuing
a standard delete operation for the extension’s data object
to the service. Second, with data objects being protected by
the general fault-tolerance mechanisms of the coordination
service, storing registration information inside a data object
frees the extension manager from providing its own mecha-
nisms, as further discussed in §3.8.

For security reasons, extensions by default can only be
triggered by the client that has registered them. However,
if a client wants to use an extension registered by another
client, it can do this by acknowledging the extension once
through a call to the extension’s data object.

3.7 Extension Execution
While the system is running, the extension manager con-
stantly monitors incoming requests as well as occurring
events, trying to match them to subscriptions of exten-
sions registered. This is practical as, following our require-
ments (see §3.2), for each operation/event, the extension
manager only needs to take extensions into account that
have been acknowledged by a particular client and is able to
ignore the subscriptions of all unacknowledged extensions.

If an operation/event matches none of the subscriptions,
the extension manager acts as a relay and forwards it to the
corresponding handlers. Otherwise, the extension manager
suppresses the operation/event for the clients affected and
executes the matching extension(s). For this purpose, the

extension manager first creates a sandbox environment for
the extension to run in (see §4.1.2) and then invokes the
corresponding methods of the extension interface (Figure 1).

Being processed instead of a regular operation, an opera-
tion extension returns a result as soon as execution is com-
plete. In such case, the extension manager forwards the re-
sult to the client whose request invoked the extension.

3.8 Fault Tolerance
State-of-the-art coordination services such as the ones de-
scribed in §2 provide resilience against faults and, for ex-
ample, offer mechanisms that allow replicas to recover from
crashes and/or new replicas to join the system. Managing
the set of registered extensions, the extension manager is a
stateful component and therefore has to be protected against
data loss. We address this problem by maintaining the state
of the extension manager in data objects as part of the regu-
lar coordination-service state. This way, the state of the ex-
tension manager is protected by the fault-tolerance mech-
anisms already in place (which are usually a combination
of replication, persistent logging, and state-transfer proto-
cols), thereby greatly reducing the implementation overhead
for making a coordination service extensible.

As discussed in §3.6, when registering an extension, the
extension manager creates a new data object in which it
stores all information necessary to recover the extension af-
ter a fault. In particular, this includes the extension’s name
and code as well as the id of the client that has registered
the extension. In addition, the extension manager updates
an index data object containing a set of pointers to the data
objects of all extensions currently registered. As a conse-
quence, when a coordination-service replica joins the system
or recovers after a fault, its local extension manager only
needs to query the index data object in order to be able to
find and then (re)load all registered extensions.

Using the same approach, an extensible coordination
service can also provide support for stateful extensions:
if an extension manages its internal state in coordination-
service data objects (instead of local variables), existing
fault-tolerance mechanisms ensure that the state is protected
against data loss and readily available after recovery.

4. Limiting Extensions
Having extensions deployed in coordination services raises
issues related to performance and security. In this section, we
present an execution model for extensions that protects the
service from inappropriate extensions that contain program-
ming errors, are deployed with malicious intent, or have been
implemented based on a bad understanding of the feature.

4.1 Basic Approach
Some systems define guidelines for extensions design and let
programmers/administrators be responsible for any problem
caused by the extensions deployed. This is the case, for ex-
ample, with portable interceptors in CORBA middleware [9]

or filters in Servlet containers [32]. Although this approach
is valid and quite reasonable in a closed environment with
well-informed developers, the experience with drivers and
modules of operating systems has shown that extensibility
can bring a lot of problems for a widely-used system [27].
Therefore, we address the problem with an approach that
puts the focus on the system protecting itself against harmful
extensions. It consists of two parts: first, prior to instantiat-
ing an extension, the server invokes a verification procedure
that analyzes the extension code to ensure that only exten-
sions performing non-critical operations are registered; sec-
ond, extensions are executed in a sandbox to be able to mon-
itor (and if necessary constrain) their behavior at runtime.

4.1.1 Extension Verification
Before compiling an extension, the extension manager veri-
fies that the extension does not exceed a certain size and that
it is compliant with a number of constraints set up to protect
the system from rogue extensions. Note that the verification
procedure does not need to decide whether an extension is
innocuous or harmful. Instead, an extension is responsible
for being compliant by only using a white-listed set of APIs
and language constructs. If this verification fails the exten-
sion is rejected and the registration aborts immediately.

The rationale behind using a white-list approach is that
extensions are not intended to be means to run arbitrary code
at a server. Instead, as shown by the examples in §6, an ex-
tension in essence is a collection of coordination-service API
calls linked by relatively simple glue code. Consequently, in
addition to the service interface, the white list only contains
basic math, boolean, and string operations. For actively-
replicated systems, the white list is required to only con-
tain deterministic operations. This is necessary to ensure that
replicas remain consistent when executing an extension [52].
In contrast, in passively-replicated systems the fact that only
one replica executes an extension leaves room for adding
nondeterministic operations to the white list.

To bound the execution time of extensions, they must
not perform recursive calls and are generally restricted to
using non-loop control structures. An exception to this rule
is that we allow extensions to iterate through data structures
of constant size (e.g., using a for-each loop in Java to access
the elements of an array or a list), as such an operation
terminates by definition.

4.1.2 Extension Sandbox
By complying with the constraints discussed before, we en-
sure that extensions do not invoke blocking operations, have
no access to the file system, cannot open and/or use net-
work sockets, and are not able to create, pause, or terminate
threads. Although this greatly limits the spectrum of prob-
lems an extension can cause, our verification procedure does
not prove extensions to be free of errors. Therefore, each ex-
tension is executed inside a sandbox that prevents extension
crashes from affecting the rest of the service.

Extension
manager

Extension sandbox

Extension

Service API

3 State access

State

State proxy
5

State access

4 State access

1

Request

2

Extension
invocation

Figure 2. Sandbox environment for extensions.

Besides handling crashes, the sandbox is also responsible
for monitoring accesses of extensions to the service state.
As illustrated in Figure 2, after being invoked to handle an
operation (1 , 2) or event, an extension does not have di-
rect access to the state of the service. Instead, all state oper-
ations performed by an extension are handled by the exten-
sion manager (3 – 5), which provides a proxy for extensions
to access the coordination service state. The state proxy im-
plements an interface similar to the one of the coordination
service, which brings three advantages. First, it reduces the
implementation overhead for extensions as existing client
code can be reused. Second, it simplifies the task of making
a coordination service extensible as no additional operations
need to be integrated into the service API. Third, limiting
extensions to the same operations clients are able to invoke
regulates the interaction with the service and potentially re-
duces the damage that bad extensions can do.

Serving as a proxy for state operations enables the ex-
tension manager to implement access-control mechanisms
ensuring that a client cannot gain privileges by invoking an
extension. Furthermore, the extension manager may apply
policies aimed at bounding the resource consumption of ex-
tensions, for example, by enforcing an upper limit on the
number of data objects an extension is allowed to create or
the maximum CPU time an extension can use per invocation.

4.2 Discussion
The focus of our approach lies on limiting the effects an
extension can have on the performance of the system. This is
achieved due to the following reasons: first, the verification
of an extension is done at registration time, resulting in no
verification overhead during execution; second, the limited
size of an extension ensures that the verification process is
fast; and third, the white list of methods and constructs an
extension is allowed to use guarantees that an extension is
not able to degrade or disrupt system performance.

Our experience with writing extensions as well as the ex-
amples in §6 show that the constraints enforced upon exten-
sions do not hinder their utilization. In particular, the lim-
itation to for-each loops turned out to not pose a problem
as loops are usually only required for iterating through op-
eration parameters or entities stored in the coordination ser-

vice. Nevertheless, there might be scenarios in which such
constraints are too restrictive. (Up to this point, we did not
find any.) For these situations, we open the possibility for
the extension verification being disabled. Alternatively, it is
possible to (statically) extend the interface of the sandbox
proxy with additional helper methods that safely implement
the required functionality.

5. Implementations
To show the effectiveness and practicality of extensions,
we have implemented two prototypes: EXTENSIBLE ZOO-
KEEPER, an extensible variant of the crash-tolerant Zoo-
Keeper [31], and EXTENSIBLE DEPSPACE, an extensi-
ble variant of DepSpace [14], a coordination service that
provides resilience against Byzantine faults. The source
code of both EXTENSIBLE ZOOKEEPER and EXTENSIBLE
DEPSPACE is publicly available via the project website at
http://www4.cs.fau.de/Research/EDC/.

5.1 EXTENSIBLE ZOOKEEPER

Below, we give an overview of the original ZooKeeper im-
plementation and discuss our modifications for EXTENSI-
BLE ZOOKEEPER (EZK). Like ZooKeeper (see §2), EZK
manages information using wait-free data objects that are
accessible via a hierarchical namespace.

5.1.1 ZooKeeper Architecture
ZooKeeper clients access the coordination service using a li-
brary that handles all communication with the server side. In
order to provide resilience against up to f crashes, the server
side comprises 2 f + 1 replicas. Each client is connected to
a single replica, to which the client issues all of its requests
and from which it also receives the corresponding replies.
Different clients usually communicate with different repli-
cas to balance load. If a client’s replica crashes, the client
establishes a connection to another replica.

One of the replicas in a ZooKeeper deployment serves
as primary while the others are backups [16]. The primary
is responsible for assigning unique sequence numbers to in-
coming updates1 and for translating such requests into state
transactions, which are then processed by all replicas, in-
cluding the primary itself. In contrast, a read is only executed
by a single replica: the one a client is connected to.

As shown in Figure 3, a replica in ZooKeeper is imple-
mented as a chain of request processors handling different
tasks including, for example, preprocessing, ordering, per-
sistent logging, and execution of requests. The composition
of the request-processor chain reflects the specific respon-
sibilities of a replica and therefore differs between primary
and backups. In particular, the primary participates as pro-
poser in the protocol responsible for the reliable distribution
of state transactions [35], while backups act as learners.

1 If a backup receives an update, it forwards the request to the primary.

http://www4.cs.fau.de/Research/EDC/

ZooKeeper allows a client to be informed about certain
state-related events (e.g., the deletion of a data object) by
registering watches. If an event that is monitored by a watch
occurs, a replica sends a notification to the associated client.

5.1.2 Making ZooKeeper Extensible
Below, we present the most important modifications and
additions we made to ZooKeeper to implement EZK.

Client Library. EZK introduces two methods for register-
ing and deregistering extensions into the ZooKeeper client
library. Internally, these methods are mapped to standard
ZooKeeper update operations (see §3.6) creating and delet-
ing sub-objects of the data object representing the extension
manager, for example, /em/ext for an extension ext.

Operation Extensions. In order to customize the behavior
of the coordination service via extensions, the extension
manager must be able to monitor and (when necessary)
control the handling of operations (see §3.5). As shown in
Figure 3, we meet this requirement in EZK by invoking the
extension manager at the preprocessor stage of ZooKeeper’s
request-processor chain. This allows the extension manager
to intercept requests issued by clients and to redirect them to
extensions. In addition, we modify the final processor stage
to enable a replica to control the results it sends to clients.

If a request entering the preprocessor stage matches the
subscription of an extension, the extension manager invokes
the corresponding extension by handing over the request.
While execution is in progress, the extension manager (via
its state-proxy subcomponent, see Figure 2) records all state
modifications performed by the extension. This way, once
execution is complete, the extension manager is able to con-
struct a multi-transaction (i.e., a batch of state updates that
is processed atomically) reflecting all state changes caused
by the extension. After its creation, the multi-transaction is
treated like any regular state transaction and passed along
the chain of request processors. Note that at this point the
implementation of EZK has been greatly simplified by the
fact that ZooKeeper natively supports the batching of trans-
actions. As a result, making ZooKeeper extensible does not
require modifications to the stage responsible for persistent
logging as well as the stages involved in the replication pro-
tocol, to which extensions are transparent.

EZK allows operation extensions to customize the results
they return to clients. For this purpose, the extension man-
ager at the leader replica piggybacks the value produced by
an extension during execution at the preprocessor stage on
the corresponding multi-transaction. When such transaction
reaches the final processor stage, the replica connected to
the client that has issued the operation request detaches the
result and includes it in the reply.

Event Extensions. For EZK, we modify ZooKeeper’s
event-handling mechanism to invoke the extension manager
each time a watch triggers. In consequence, the extension

Primary
replica

Pre-
processor Proposer Final

processor
. . .

Additional processors
(e.g., for logging)

Extension manager

Request Result

Request

Multitransaction

Modifications and additions for Extensible ZooKeeperModifications additions

Figure 3. Basic architecture (simplified) of a primary repli-
ca in ZooKeeper and EXTENSIBLE ZOOKEEPER.

manager is able to execute event extensions with matching
subscriptions. If at least one of such extensions exists for a
particular watch, the original notification to the client will be
suppressed. However, an event extension may still choose to
send a notification of its own.

5.2 EXTENSIBLE DEPSPACE

In the following, we present the architecture of DepSpace
and our additions for EXTENSIBLE DEPSPACE (EDS). Both
systems rely on the tuple-space abstraction [26] to provide
coordination services for clients.

5.2.1 DepSpace Architecture
DepSpace provides resilience against f Byzantine faults and
therefore requires a minimum of 3 f + 1 replicas, which are
kept consistent using the BFT-SMaRt [13] library that han-
dles all tasks related to state machine replication (e.g., re-
quest ordering and state transfer). As shown in Figure 4,
the implementation of a DepSpace server replica comprises
multiple layers with different responsibilities providing, for
example, means to control the access of clients to tuples. Be-
ing an actively-replicated system, all replicas in DepSpace
process all requests, starting at the bottom layer.

As in ZooKeeper, DepSpace clients use a distinct library
to invoke operations at the service. However, DepSpace does
not expose a notification-service interface to clients that
could be used to get information about events such as the
creation of an object. Instead, a DepSpace client for this
purpose performs a read operation that, if the corresponding
data object does not exist, blocks until the object is created.
In consequence, the client only needs to wait for its read to
complete and does not have to actively poll the service.

5.2.2 Making DepSpace Extensible
Below, we present an overview of our measures to derive
EDS from DepSpace.

Client Library. Similar to EZK, we add convenience meth-
ods for the registration and deregistration of extensions to
DepSpace’s client library. In EDS, calls to these methods
are translated to DepSpace operations creating and deleting
tuples of a tuple space that is dedicated to the extension man-
ager and not accessible via regular operations.

Replica 1 Replica 2 Replica n

. . .

BFT-SMaRt

Extension manager

Policy enforcement

Access control

Tuple space

Extension manager

Policy enforcement

Access control

Tuple space

Extension manager

Policy enforcement

Access control

Tuple space

Request Result Additions for Extensible DepSpace

Figure 4. Overview of the replicated DepSpace server ar-
chitecture and the additions for EXTENSIBLE DEPSPACE.

Operation Extensions. As shown in Figure 4, at the server
side, we implement EDS by introducing a new extension
layer containing the extension manager at the bottom of
the stack. This location has two benefits. First, all incoming
client requests have to pass the extension layer, allowing the
extension manager to redirect them to operation extensions.
Second, the extension manager does not need to provide ad-
ditional access-control mechanisms for operations invoked
by extensions as this task is performed by upper layers.

Event Extensions. As discussed in §5.2.1, an event in
DepSpace occurs when a blocked operation unblocks. At
this point, EDS hands over control to the extension manager,
which is then able to execute matching event extensions. In
the following, an extension may decide to block the opera-
tion again, which results in no reply being sent to the client.
A blocked call only returns if the associated event occurs
and all the extensions triggered by it let it proceed.

6. Evaluation
In this section, we evaluate EZK and EDS for several use
cases to analyze the impact of extensions on clients that in-
voke them (see §6.1) as well as the side effects on clients
that perform regular read and write operations on the coor-
dination service (see §6.2). All experiments are conducted
on a cluster of 4-core servers (2.3 GHz, 8 GB RAM) that are
connected with switched Gigabit Ethernet. Clients are exe-
cuted on separate 12-core machines (2.4 GHz, 24 GB RAM)
and run a stress test by continuously invoking the opera-
tion under test at the coordination service; as a consequence,
each client has at most one request pending at a time. All
systems evaluated are configured to tolerate a single faulty
server, which means that three servers are used for EZK and
ZooKeeper and four servers for EDS and DepSpace. Each
data point in the graphs represents the average of five runs.

6.1 Coordination Recipes
In the following, we evaluate the usefulness and efficiency
of extensions based on four recipes included in the Apache
Curator library [2] that provide support for a shared counter,

a distributed queue, a distributed barrier, and leader election,
respectively. To show their generality, we present the recipes
using an abstract coordination-service API, which can be
mapped to both ZooKeeper and DepSpace (see Table 2). In
all the examples discussed in this section, a client’s remote
reference to the coordination service is denoted as remote;
in contrast, an extension executed at the server side can
access the service via a local reference local.

6.1.1 Shared Counter
Shared counters are used for different purposes in distributed
systems including, amongst other things, the implementation
of semaphores, the generation of unique ids and the collec-
tion of statistics. Figure 5 shows how the increment op-
eration of such a counter can be realized based on the op-
erations provided by a traditional coordination service. The
current value of the counter is managed in an object /ctr.
To increment the counter, a client first retrieves the current
value (T4), then locally adds one, and finally updates the
counter object (T5). As multiple clients may perform the
same operation concurrently, to ensure atomicity, the counter
object may only be updated if its value has remained un-
changed since a client’s last read. If this is not the case, the
entire increment operation needs to be retried (T2, T6).

Utilizing the atomicity of extensions, the client imple-
mentation for an extensible coordination service in contrast
only comprises a single remote call (C2) to a data object that
triggers the extension (i.e., /ctr-increment). If invoked,
the extension performs similar steps to increment the counter
as the standard client implementation (E2–E4).

Traditional Client Implementation

T1 int increment() {
T2 while(true) {
T3 /∗Read current counter value and try to write back new value. ∗/
T4 int c = remote.read("/ctr");
T5 boolean success = remote.cas("/ctr", c, c + 1);
T6 if(success) return c + 1;
T7 }
T8 }

Extension-based Client Implementation

C1 int increment() {
C2 return remote.read("/ctr−increment");
C3 }

Extension Implementation

E1 OBJECT read(OBJECTID oid) {
E2 int c = local.read("/ctr");
E3 local.update("/ctr", c + 1);
E4 return c + 1;
E5 }

Figure 5. Implementation of the increment operation of a
shared counter without (top) and with (bottom) extension.

1 10 20 30 40 50
0

5

10

15

20

25

30

Number of clients

A
ve

ra
ge

th
ro

ug
hp

ut
[k

O
ps

/s
]

DepSpace

EDS

ZooKeeper

EZK

1 10 20 30 40 50
0

20

40

60

80

100

120

Number of clients
A

ve
ra

ge
la

te
nc

y
[m

s]

DepSpace

EDS

ZooKeeper

EZK

Figure 6. Evaluation results for the shared-counter recipe.

The results of our experiments presented in Figure 6 show
that the ZooKeeper and DepSpace implementations of the
shared counter reach modest throughput values. This hap-
pens due to the fact that increasing the number of clients
increases also the number of tries required for executing a
counter increment. EZK and EDS, on the other hand, are
less susceptible to contention and therefore able to achieve
considerably higher throughputs (e.g., an increase of 20×
for EZK over ZooKeeper). This is possible as clients in both
extension-based systems only need to perform a single re-
mote call to successfully increment the counter, resulting in
low latencies of about 2 milliseconds (EZK) and 3 millisec-
onds (EDS) for 50 concurrent clients, respectively.

6.1.2 Distributed Queue

Distributed queues play an important role in the exchange of
information between producer and consumer processes run-
ning on different hosts. Figure 7 presents the basic recipe
to implement such a data structure using a coordination ser-
vice. To add an element to the end of a queue, a client creates
a new sub-object of the queue’s main object (T3). Removing
the head element from the queue in contrast takes multiple
steps. First, the client learns all elements that are currently
in the queue (T9) and sorts them by creation time (T10). Af-
ter this step, the client is able to remove the head element
from the queue (i.e., the element with the lowest creation
timestamp) by deleting the corresponding data object (T14).
In case of remove being invoked concurrently by different
clients, only the client that successfully performs the dele-

1 10 20 30 40 50
0

5

10

15

Number of clients

A
ve

ra
ge

th
ro

ug
hp

ut
[k

O
ps

/s
]

DepSpace

EDS

ZooKeeper

EZK

1 10 20 30 40 50
0

5

10

15

Number of clients

A
vg

.
da

ta
se

nt
by

cl
ie

nt
[K

B
/O

p]

DepSpace

EDS

ZooKeeper

EZK

Figure 8. Evaluation results for the distributed queue.

tion is allowed to return the result (T15). All other clients
first try to remove subsequent elements (T13) before start-
ing the entire operation all over again (T7).

In our extension-based implementation, adding an ele-
ment to the queue is identical to the non-extension vari-
ant (C2). However, removing the head element only requires
a single remote call by the client (C6), which leads to the
extension deleting the head element atomically (E2–E4) and
returning the element’s data (E5).

To evaluate the different queue implementations, we run
an experiment in which each client repeatedly first adds a
new element to the (initially empty) queue and then, in a sep-
arate call, removes the current head element. As a result, due
to calls of different clients interleaving, the size of the queue
may vary between zero and the number of clients. However,
as each remove is preceded by an add, it is ensured that at
the time of the remove call the queue contains at least one
element. In order to be able to properly assess the coordi-
nation overhead involved, elements in our experiment carry
an empty data payload. Consequently, the operation costs
represent the minimum amount of data required to send an
element through the queue in each of the scenarios evalu-
ated. Notice that clients need to send much more data with
DepSpace (resp. EDS) than with ZooKeeper (resp. EZK),
mainly because the Byzantine fault-tolerant protocol of the
former requires requests to be sent to all service replicas.

Figure 8 shows that the ZooKeeper and DepSpace imple-
mentations of the queue are subject to the same problem as
the corresponding shared counter variants in §6.1.1. More
specifically, when multiple clients remove elements from

Method Description ZooKeeper DepSpace
create(o) Creates a data object o. create(o) out(o)

delete(o) Deletes data object o. delete(o, ANY VERSION) inp(o)

read(o) Reads the content of data object o. getData(o) rdp(o)

update(o, c) Sets the content of data object o to c. setData(o, c, ANY VERSION) replace(o, ANY, nc)

cas(o, cc, nc)
update with compare-and-swap semantics: Only sets the int v = object version observed by last read(o)

replace(o, cc, nc)content of object o to nc if the current content is cc. setData(o, nc, v)

subObjects(o) Reads the contents of all sub-objects of data object o.
1. OBJECTID[] oids = getChildren(o)

rdAll(<o, SUB ANY>)2.∗ For each oid in oids: getData(oid)
∗ Step 2 can be omitted if only the ids of sub-objects are of interest.

block(o) Waits until data object o is created. 1. Set exists watch on data object o.
rd(o)2. Unblock on receiving watch-event notification.

monitor(x, o)
Creates object o and instructs the service to monitor client x. 1. Client x creates object o as an ephemeral node. 1. Client x creates o as a lease tuple.
If client x terminates or fails, the service deletes object o. 2. ZooKeeper deletes o if client x’s session ends. 2. o is deleted if x fails to renew it.

Table 2. Overview of the coordination-service methods used in §6 and their equivalences in ZooKeeper and DepSpace.

Traditional Client Implementation

T1 void add(ELEMENTID eid, byte[] data) {
T2 /∗ Create object storing the element’s data. ∗/
T3 remote.create("/queue/" + eid, data);
T4 }
T6 byte[] remove() {
T7 while(true) {
T8 /∗ Learn queue elements. ∗/
T9 OBJECT[] objs = remote.subObjects("/queue/");

T10 Sort objs ascending by creation timestamp;

T12 /∗ Try to remove the current head of the queue. ∗/
T13 For each obj in objs {
T14 boolean success = remote.delete(obj);
T15 if(success) return obj.data;
T16 } } }

Extension-based Client Implementation

C1 void add(ELEMENTID eid, byte[] data) {
C2 remote.create("/queue/" + eid, data);
C3 }
C5 byte[] remove() {
C6 return remote.read("/queue/head").data;
C7 }

Extension Implementation

E1 OBJECT read(OBJECTID oid) {
E2 OBJECT[] objs = local.subObjects("/queue/");
E3 OBJECT head = object from objs with lowest creation timestamp;
E4 local.delete(head);
E5 return head.data;
E6 }

Figure 7. Implementation of a distributed queue without (left) and with (right) extension.

Traditional Client Implementation

T1 void enter() {
T2 /∗ Register this client at the barrier using the client’s id. ∗/
T3 remote.create("/barrier/" + this.id);

T5 /∗ Check whether all clients have entered the barrier. ∗/
T6 OBJECT[] objs = remote.subObjects("/barrier/");
T7 if(| objs | < barrier threshold) {
T8 /∗ Block until /ready object is created. ∗/
T9 remote.block("/ready");

T10 } else {
T11 /∗ Create /ready object. ∗/
T12 remote.create("/ready");
T13 }
T14 }

Extension-based Client Implementation

C1 void enter() {
C2 remote.block("/ready/" + this.id);
C3 }

Extension Implementation

E1 void block(OBJECTID oid) {
E2 local.create("/barrier/" + client id encoded in oid);
E3 OBJECT[] objs = local.subObjects("/barrier/");
E4 if(| objs | < barrier threshold) {
E5 local.block("/ready");
E6 } else {
E7 local.create("/ready");
E8 } }

Figure 9. Implementation of the enter operation of a distributed barrier without (left) and with (right) extension.

Traditional Client Implementation

T1 void becomeLeader() {
T2 /∗ Instruct the coordination service to monitor this client. ∗/
T3 remote.monitor(this.id, "/leader/" + this.id);

T5 /∗ Return as soon as this client has become leader. ∗/
T6 if(amILeader()) return;
T7 Wait for I AM LEADER signal;
T8 }

T10 void objectDeletionEvent() { /∗ Event handler ∗/
T11 if(amILeader()) Send I AM LEADER signal;
T12 }
T14 boolean amILeader() { /∗ Local helper method ∗/
T15 OBJECT[] objs = remote.subObjects("/leader/");
T16 Sort objs ascending by creation timestamp;
T17 CLIENTID leaderID = client id encoded in objs[0];
T18 return (leaderID == this.id);
T19 }

Extension-based Client Implementation

C1 void becomeLeader() {
C2 remote.block("/leader/" + this.id);
C3 }

Extension Implementation

E1 void block(OBJECTID oid) {
E2 CLIENTID cid = client id encoded in oid;
E3 local.monitor(cid, "/clients/" + cid);
E4 local.block(oid);
E5 }
E7 void objectDeletionEvent() { /∗ Event handler ∗/
E8 OBJECT[] objs = local.subObjects("/clients/");
E9 OBJECT ldr = object from objs with lowest creation timestamp;

E10 CLIENTID newLeaderID = client id encoded in ldr;
E11 local.create("/leader/" + newLeaderID);
E12 }

Figure 11. Implementation of the leader-election recipe without (left) and with (right) extension.

2 10 20 30 40 50
0

5

10

15

Number of clients

A
ve

ra
ge

la
te

nc
y

[m
s]

DepSpace

EDS

ZooKeeper

EZK

2 10 20 30 40 50
0

20

40

60

80

100

Number of clients
A

vg
.

da
ta

se
nt

by
cl

ie
nt

s
[K

B
/O

p]

DepSpace

EDS

ZooKeeper

EZK

Figure 10. Evaluation results for the distributed barrier.

the queue concurrently, only one of them is successful. This
means that with more clients accessing the queue, the costs
per successful operation (in terms of data to be transmitted
by a client) rise due to the increasing number of retries; the
add operation, on the other hand, is not affected by con-
tention and therefore still always succeeds at the first try. In
contrast, the costs of both queue operations in the extension-
based variants are independent of the number of concurrent
accesses, allowing EZK and EDS to outperform ZooKeeper
and DepSpace by a factor of 17 and 24, respectively.

6.1.3 Distributed Barrier
Distributed barriers are abstractions used to introduce syn-
chronization points for a group of processes executed on
different hosts. Each process that enters the barrier early
is blocked until all other processes have also arrived at the
barrier. Figure 9 shows how to implement the enter op-
eration based on a traditional coordination service. First, a
client registers at the barrier by creating an object contain-
ing its id (T3). Next, the client checks whether all processes
have entered the barrier by counting the id objects of all
clients (T6–T7). If the barrier is not complete yet, the client
blocks until a special /ready object exists (T9). This object
is created as soon as the barrier is complete (T12), thereby
unblocking all clients that are waiting at the barrier.

Using an extension, the client side of the barrier can be
greatly simplified: here, a client only invokes a single re-
mote call that blocks until the barrier is complete (C2). For
each such call of a client, at the server side, the extension
performs the same steps as the client of the traditional im-
plementation (E2–E7). However, there is an important dif-
ference: waiting for the /ready object to be created does
not actually block the extension (E5). Instead, the block

operation at the server side is implemented to only submit
a registration for the object-creation event, which results in
the extension terminating afterwards. When the barrier is
complete, the standard event-handling mechanism then takes
care of sending the unblock notification to the client.

Figure 10 shows that the synchronization overhead for a
distributed barrier in EZK and EDS is significantly lower
than in ZooKeeper and DepSpace, respectively, both in terms
of latency as well as the amount of data to be sent. This is due

2 10 20 30 40 50
0

200

400

600

800

Number of clients

A
ve

ra
ge

th
ro

ug
hp

ut
[O

ps
/s

]

DepSpace

EDS

ZooKeeper

EZK

2 10 20 30 40 50
0

1

2

3

4

5

6

Number of clients

A
ve

ra
ge

si
gn

al
in

g
la

te
nc

y
[m

s]

DepSpace

EDS

ZooKeeper

EZK

Figure 12. Evaluation results for the leader-election recipe.

to the fact that entering a barrier using an extensible coordi-
nation service requires only a single remote call. As soon
as the last client enters the barrier, the extension immedi-
ately creates the /ready object and thereby causes the coor-
dination service to send out unblock notifications to clients
informing them that the barrier is complete. In contrast, in
ZooKeeper and DepSpace, after the last client has entered
the barrier, two additional remote calls are required to in-
form the other clients: one to find out that the barrier is com-
plete (T6) and one to trigger the unblock notifications (T12).
As a result, more messages are sent and latency increases.

6.1.4 Leader Election
Appointing a leader from a group of processes and electing a
new leader after the old one has terminated or failed are two
of the most common coordination tasks in distributed sys-
tems. Figure 11 shows how to use a traditional coordination
service to implement (handling of corner cases omitted) a
becomeLeadermethod that blocks until the caller takes over
as acting leader. First, the client creates an object with its id
that is automatically deleted by the service as soon as the
client terminates or fails (T3). Then, the client determines
the current leader by learning the id objects of all clients
registered and selecting the object with the lowest creation
timestamp (T15–T17). If the client has been elected, the
becomeLeader method returns instantly (T6). Otherwise,
the procedure is repeated each time the client learns that the
object of another client has been deleted (T10–T11).2

Using an extensible coordination service, the client im-
plementation comprises a single operation that blocks un-
til the client has been elected as leader (C2). The server-
side implementation is a combined operation-event exten-
sion. When a client registers to become leader, the extension
instructs the service to monitor the client (E3) and then per-
forms the client’s original block call (E4); as discussed in
§6.1.3, this operation is non-blocking at the server side. If the
current leader terminates or fails, the extension handles the
deletion event for the corresponding id object by appointing
a new leader (E8–E10) and unblocking the becomeLeader

call of the client affected (E11).

2 ZooKeeper avoids a herd effect by notifying only a particular client on
such an event. Nevertheless, this client then still has to call amILeader().

0 2 4 6 8 10 12
0.0

0.5

1.0

1.5

2.0

2.5

Queue throughput [kOps/s]

A
ve

ra
ge

la
te

nc
y

[m
s] Regular writes

Regular reads

0 2 4 6 8 10
0.0

1.0

2.0

3.0

4.0

5.0

Queue throughput [kOps/s]
A

ve
ra

ge
la

te
nc

y
[m

s] Regular writes

Regular reads

Figure 13. Impact of the queue extension on regular clients
accessing EZK (left) and EDS (right).

For our evaluation, we have performed stress tests in
which a newly appointed leader immediately abdicates by
deleting its id object. The results in Figure 12 show that EZK
and EDS are able to achieve more leader changes per sec-
ond than their respective counterparts. The reason for this
lies in the differences in notification overhead after a leader
change: while obtaining the confirmation of being the new
leader in traditional implementations requires an additional
remote call (T15), a client using an extension-based coordi-
nation service directly learns of its election. As a result, the
signaling latency in EZK and EDS is about 25% and 45%
lower than in ZooKeeper and DepSpace, respectively.

6.2 Impact on Regular Clients
Our evaluation of different recipes in §6.1 has shown that
extensions offer significant performance benefits to clients.
We analyze next their impact on regular clients accessing the
coordination service without triggering any extension.

As discussed in §5, making a coordination service exten-
sible requires modifications to the existing architecture. A
comparison of the latency of regular reads and writes in EZK
and EDS to the latency of the same operations in ZooKeeper
and DepSpace shows that the overhead caused by our mod-
ifications is negligible (i.e., less than 0.4%). This is mainly
due to the extensions being accessible only to clients that
have registered or acknowledged them (see §3.6). In con-
trast, requests of regular clients bypass most of the mecha-
nisms introduced for extensibility.

From a server perspective, executing an extension (i.e., a
composition of multiple operations) is usually more expen-
sive than processing a regular read or write. To analyze the
impact of extensions on the performance of regular opera-
tions, we repeat the distributed-queue experiment presented
in §6.1.2. This time, however, we add 30 regular clients that
access different data objects of size 256 bytes, a typical size
for the objects stored in a coordination service, which are
usually smaller than 1 kilobyte [17]. Half of these regular
clients continuously read data from EZK and EDS while the
remaining fifteen clients perform writes.

Figure 13 shows the latencies observed by regular clients
according to the throughput for the distributed queue. For
regular writes, latencies in both systems increase when more
elements are sent through the queue, and there are two main
reasons for this increase. First, the overall number of state
modifications that need to be agreed upon across servers.
Second, the queue remove operation becoming more expen-
sive as the extension needs to access more data objects. The
impact on latency is higher for EZK as latencies are gener-
ally lower than in EDS. In contrast to writes, the latency of
read operations issued by regular clients is mainly unaffected
by the queue extension. Both ZooKeeper and DepSpace, and
consequently EZK and EDS, each provide a fast path for
reads that only overlaps in small and comparably inexpen-
sive parts with the longer and more costly path taken by
writes and extensions.

6.3 Discussion
Below, we discuss a number of insights gained from the
experiments presented in previous sections.

Comparison of Coordination Recipes. For all four coor-
dination recipes evaluated, EZK and EDS achieve better
performance than their respective counterparts, ZooKeeper
and DepSpace. Analyzing the reasons for these results, we
are able to divide the recipes into two different groups. On
the one hand, the shared counter and the distributed queue
mainly benefit from the fact that an extension allows clients
to execute multiple operations atomically, thereby eliminat-
ing the need to retry operations in the face of contention.
On the other hand, the recipes for the distributed barrier and
leader election, which are both used by clients to wait for
a specific event, take advantage of not requiring additional
remote calls after the event has actually occurred.

In our evaluation, both clients and servers have been con-
nected via a local network, as it is the case when coordi-
nation services are responsible for synchronizing different
processes running in the same data center. With network la-
tencies in such an environment being low, remote calls in
general and retrying operations in particular are relatively
cheap. However, this does not apply to scenarios in which
clients access the coordination service via wide-area net-
work links. As a consequence, for both groups of recipes dis-
cussed above, we expect extensions to provide even greater
performance benefits in geographically distributed settings.

Comparison between EZK and EDS. EZK and EDS dif-
fer in many ways including, for example, their fault model.
However, with regard to extensibility, the different tech-
niques applied for replication are of particular significance.
In EZK, extensions are only executed by the primary, which
then distributes the corresponding state modifications. As a
result, the amount of data to be exchanged between servers
depends on the number and size of the state modifications
issued by an extension. In contrast, EDS first distributes the
client request that triggers the extension and then processes

the extension on all servers. Here, the size of the messages
transmitted between servers depends on the size of the re-
quest, but is independent of the extent to which an extension
modifies the service state. This advantage comes at the cost
of not being able to support nondeterministic extensions.

7. Novel Use Cases for Coordination Services
Current applications mostly use coordination services out-
side their critical processing path to avoid the costs of ac-
cessing them. The performance gains obtained by using ex-
tensions may enable use cases that so far have not been con-
sidered practical. Two examples of novel uses for coordina-
tion services are shared persistent and atomic counters (re-
quired by many modern distributed systems such as Percola-
tor [49] and CORFU [8]) and message queues, implementing
a highly-available (and restricted) message-oriented middle-
ware in the same line as ActiveMQ [1]. The biggest advan-
tage in using coordination services for implementing these
systems would be the reuse of a relatively stable and high-
performance fault-tolerant service. Below, we describe two
additional use cases related to network and storage.

7.1 Software-defined Networks
The emergence of software-defined networks gives unprece-
dented freedom to engineers to modify the network control
plane via a network controller, which (among other things) is
responsible for defining routes for every new flow on the net-
work. Being a logically-centralized point of control for the
network, the controller needs to satisfy non-functional prop-
erties such as dependability and scalability. To satisfy these
properties, distributed controllers (e.g., [10, 38]) were devel-
oped. As a key requirement, they have to ensure that deci-
sions taken by different controller nodes are based on an ap-
proximately consistent view of the network state. ZooKeeper
is already employed in practical controllers, for example, for
assigning responsibility to specific nodes for portions of the
network [38]. However, the coordination service is always
accessed outside of the flow processing path.

A fundamental tension in the design of distributed con-
trollers is which part of the network state must be perfectly
synchronized between the control nodes, and for which ap-
plications. Examples of network applications that do require
such consistency are path-route establishment, in which di-
vergent controllers can temporarily install block-hole routes,
and load balancing, which requires consistency for an opti-
mal resource utilization [41].

In particular, implementing optimal load balancing for a
multi-server system requires each of the controller nodes
to assign flows for different servers. For example, with a
round-robin policy, each controller needs to get a differ-
ent sequence number that will be projected to each one of
the servers, which requires a shared counter. Without exten-
sions, using ZooKeeper or DepSpace for implementing such
a counter would create a bottleneck in the system that would

result in the distributed controller being able to assign less
than 2k flows/s to servers (see Figure 6). In contrast, employ-
ing EZK with our extension-based counter variant, the sys-
tem can achieve up to 25k increments/s, which is more than
what is reported for current distributed controllers [10, 15].

7.2 File-system Metadata Services
Recently, the SCFS file system [12] proposed the use of a co-
ordination service for storing the metadata associated with
files (i.e., directories, links, file names, permissions, etc.)
that are maintained in cloud storage services like Amazon
S3 or Microsoft Azure Blob Store. A fundamental challenge
in this context is to map the POSIX semantics to the API
provided by the coordination service. As already explained,
DepSpace provides an unstructured tuple space that does not
provide the notion hierarchy commonly found in a file sys-
tem namespace. To implement this notion, SCFS developers
made each tuple represent an object in the system, with a
field containing the name of the parent node.

This design suffers from a fundamental limitation re-
lated to the implementation of the move/rename call used
to atomically move files between directories or to change
the name of a directory. In DepSpace, the main problem is
that modifying the name of a node requires the modification
of the parent field in all of its child nodes.3 However, even
if ZooKeeper was used, the operation could not be directly
executed either, as it does not support the renaming of nodes.

The solution employed for SCFS was to modify Dep-
Space by adding a hook that is executed each time a tuple
name changes to perform the necessary adjustments. This
modification ensures the atomicity of the rename operation
and can be easily implemented as an EDS extension.

Notice that without extending the coordination service
(changing the code, as done in the case of SCFS, or with
our proposed extension) it would be impossible to retain the
POSIX semantics of the rename call. However, even if the
atomicity of the rename operation were not an issue, using
EDS would still bring the benefit of decreasing the number
of RPCs from k + 1 (k being the number of child nodes
of the node being renamed) to 1, resulting in significant
performance gains for this operation.

8. Related Work
Operating Systems. Extensibility is a common property of
operating systems, mostly for dealing with the heterogeneity
of the underlying hardware (e.g., device drivers) and deploy-
ment needs (e.g., Linux modules). However, some research
systems made extensibility a first class property of their de-
signs. For example, Exokernel [24] and JX [28] allow the
replacement of fundamental OS components for giving ap-
plications direct control of resources. Other systems such as
SPIN [11] and VINO [54] allow modular extensions in the

3 The SCFS developers refrained from introducing an indirection level in
order to avoid the additional RPCs such a measure would have required.

form of event handlers (and even function replacements) ca-
pable to directly interact with the kernel in response to low-
level events. Our extensibility architecture is similar to this
second approach, and many of the constraints defined for
VINO extensions [54] are similar to the ones we use.

Databases. Extensibility is a well-known concept in da-
tabase management systems that offer the possibility to in-
troduce new functionality via user-defined functions [42]
and stored procedures [57]. In addition, many of these sys-
tems support triggers [47], which are executed when the
state of the database changes, similar to event extensions in
our model. However, while triggers are commonly used by
administrators to ensure the integrity of the database, and
therefore are not user specific, event extensions are means
for coordination-service clients to customize the reaction to
events such as the failure of another client.

Mobile Code. Extensible coordination services implement
the concept of remote evaluation [56] that aims at moving
the computation in a system to where the data is by transfer-
ring program code. Besides minimizing the amount of data
that has to be sent over the network, this approach also has
the advantage of offering clients the possibility to dynami-
cally add new functionality to the server. As a consequence,
extensions are also related to mobile agents [37]. However,
unlike a mobile agent, an extension is only transferred once,
from client to server, and does not move between different
servers. Furthermore, while mobile agents store their state
internally in order to keep it during transfer, extensions man-
age their state in the coordination service. Implementations
of mobile agents are usually based on interpreted program-
ming languages. On the one hand, this allows an agent to
use all the features provided by the language; on the other
hand, this makes it more difficult and costly for the server to
protect itself against misbehaving agents. In our approach,
extensions are restricted to a small set of methods (i.e., the
service API and the white-listed functionality) and access
the server resources (i.e., the service state) using a sandbox
mechanism that enables the server to monitor and possibly
decline each access.

Tuple Spaces. The tuple space model used by DepSpace
has been introduced in the Linda coordination language [26].
Since then, several additional tuple-space primitives have
been proposed (e.g., [7, 18, 34, 51, 53]) as the original
set of primitives was not powerful enough to handle all
coordination tasks in an efficient way, which supports our
argument that there is no one-fits-all coordination kernel. In
contrast to the approaches mentioned, our solution to the
problem does not require changes to the service API and
allows new functionality to be added dynamically.

Different authors proposed to combine mobile agents and
tuple spaces [19, 22, 45, 50] in order to exploit the benefits of
mobile code (see above) for coordination tasks. Unlike these
works, our approach is not limited to the tuple-space model,

as shown by EZK. In addition, we address the problem of
making existing coordination services extensible and show
that our model is suitable for both crash and Byzantine fault-
tolerant systems.

Coordination Services. Several works have presented mod-
ifications and additions to ZooKeeper (e.g., [21, 23, 25, 36,
40, 55]), but (almost) none of them deals with changing
the service’s programming model. A notable exception is a
recent short paper by Kalantari et al. [36] which identifies
inefficiencies related to ZooKeeper’s watch mechanism. As
a solution, the authors present the prototype implementa-
tion of a coordination service that is able to execute critical
sections (i.e., sequences of operations that are protected by
a lock) relying on a deterministic multi-threaded server. In
contrast to this work, we do not focus on a specific coor-
dination service but show that inefficiencies are an inherent
problem of limited coordination kernels. In addition, our
model for extensible coordination considers security and
performance issues and can be applied to existing services
without the need to modify major parts of the system (e.g.,
mechanisms providing fault tolerance), as shown by EZK
and EDS. One reason for this is that our approach does not
require support for deterministic multithreading.

There are several coordination services that allow clients
to submit a batch of operations in a transaction [6, 7, 31].
The service then either atomically executes all the opera-
tions belonging to the same transaction or, in case the trans-
action is aborted, none of them. Although powerful, such
transactions have a significant drawback compared with ex-
tensions: clients are not able to create a transaction in which
one operation uses the result of another operation as input;
that is, unlike an extension, a transaction is only a collection
of coordination-service operations, without any glue code.
Consequently, in none of the use cases presented in §6 a
transaction would be able to replace the extension.

9. Conclusion
We proposed a general model for extending coordination
services that enables the implementation of very efficient
coordination tasks. Our model has been implemented in two
coordination services, ZooKeeper and DepSpace, and we
showed that with comparably simple extensions it is possible
to outperform them by an order of magnitude for distributed
queues and atomic counters. We expect these benefits to
enable new use cases for coordination services that today
are deemed impractical due to performance limitations.

Acknowledgments
We thank the anonymous reviewers for their constructive
comments. We also thank Ricardo Mendes for helping us
with the DepSpace codebase and Rüdiger Kapitza for inter-
esting discussions and helpful comments on drafts of the pa-
per. This work is partially supported by EC’s FP7 project
BiobankCloud (317871).

References
[1] Apache ActiveMQ. http://activemq.apache.org/.

[2] Apache Curator. http://curator.apache.org/.

[3] CoreOS etcd. https://github.com/coreos/etcd/.

[4] JZab. https://github.com/zk1931/jzab/.

[5] LogCabin. https://github.com/logcabin/.

[6] M. K. Aguilera, A. Merchant, M. Shah, A. Veitch, and
C. Karamanolis. Sinfonia: A new paradigm for building scal-
able distributed systems. In Proceedings of the 21st Sym-
posium on Operating Systems Principles (SOSP ’07), pages
159–174, 2007.

[7] D. E. Bakken and R. D. Schlichting. Supporting fault-tolerant
parallel programming in Linda. IEEE Transactions on Paral-
lel and Distributed Systems, 6(3):287–302, 1995.

[8] M. Balakrishnan, D. Malkhi, J. D. Davis, V. Prabhakaran,
M. Wei, and T. Wobber. CORFU: A distributed shared log.
ACM Transactions on Computer Systems, 31(4), 2013.

[9] R. Baldoni, C. Marchetti, and L. Verde. CORBA request
portable interceptors: Analysis and applications. Concurrency
and Computation: Practice and Experience, 15(6):551–579,
2003.

[10] P. Berde, M. Gerola, J. Hart, Y. Higuchi, M. Kobayashi,
T. Koide, B. Lantz, B. O’Connor, P. Radoslavov, W. Snow, and
G. Parulkar. ONOS: Towards an open, distributed SDN OS.
In Proceedings of the 3rd Workshop on Hot Topics in Software
Defined Networking (HotSDN ’14), pages 1–6, 2014.

[11] B. N. Bershad, S. Savage, P. Pardyak, E. G. Sirer, M. E. Fi-
uczynski, D. Becker, C. Chambers, and S. Eggers. Extensi-
bility, safety and performance in the SPIN operating system.
In Proceedings of the 15th Symposium on Operating Systems
Principles (SOSP ’95), pages 267–283, 1995.

[12] A. Bessani, R. Mendes, T. Oliveira, N. Neves, M. Correia,
M. Pasin, and P. Verı́ssimo. SCFS: A shared cloud-backed file
system. In Proceedings of the 2014 USENIX Annual Technical
Conference (ATC ’14), pages 169–180, 2014.

[13] A. Bessani, J. Sousa, and E. A. P. Alchieri. State machine
replication for the masses with BFT-SMaRt. In Proceedings
of the 44th International Conference on Dependable Systems
and Networks (DSN ’14), pages 355–362, 2014.

[14] A. N. Bessani, E. P. Alchieri, M. Correia, and J. Fraga.
DepSpace: A Byzantine fault-tolerant coordination service.
In Proceedings of the 3rd European Conference on Computer
Systems (EuroSys ’08), pages 163–176, 2008.

[15] F. Botelho, F. Ramos, D. Kreutz, and A. Bessani. On the
feasibility of a consistent and fault-tolerant data store for
SDNs. In Proceedings of the 2nd European Workshop on
Software Defined Networks (EWSDN ’13), pages 38–43, 2013.

[16] N. Budhiraja, K. Marzullo, F. B. Schneider, and S. Toueg.
The primary-backup approach. In Distributed Systems (2nd
Edition), pages 199–216. Addison-Wesley, 1993.

[17] M. Burrows. The Chubby lock service for loosely-coupled
distributed systems. In Proceedings of the 7th Symposium on
Operating Systems Design and Implementation (OSDI ’06),
pages 335–350, 2006.

[18] P. Butcher, A. C. Wood, and M. Atkins. Global synchronisa-
tion in Linda. Concurrency – Practice and Experience, 6(6):
505–516, 1994.

[19] G. Cabri, L. Leonardi, and F. Zambonelli. MARS: A pro-
grammable coordination architecture for mobile agents. IEEE
Internet Computing, 4(4):26–35, 2000.

[20] T. D. Chandra, R. Griesemer, and J. Redstone. Paxos
made live: An engineering perspective. In Proceedings of
the 26th Symposium on Principles of Distributed Computing
(PODC ’07), pages 398–407, 2007.

[21] A. Clement, M. Kapritsos, S. Lee, Y. Wang, L. Alvisi,
M. Dahlin, and T. Riche. UpRight cluster services. In Pro-
ceedings of the 22nd Symposium on Operating Systems Prin-
ciples (SOSP ’09), pages 277–290, 2009.

[22] E. Denti, A. Natali, A. Omicini, and M. Venuti. An extensible
frame work for the development of coordinated applications.
In Proceedings of the 1st International Conference on Coordi-
nation Languages and Models (COORDINATION ’96), pages
305–320, 1996.

[23] T. Distler and R. Kapitza. Increasing performance in Byzan-
tine fault-tolerant systems with on-demand replica consis-
tency. In Proceedings of the 6th European Conference on
Computer Systems (EuroSys ’11), pages 91–105, 2011.

[24] D. R. Engler, M. F. Kaashoek, and J. O’Toole Jr. Exoker-
nel: An operating system architecture for application-level re-
source management. In Proceedings of the 15th Symposium
on Operating Systems Principles (SOSP ’95), pages 251–266,
1995.

[25] A. D. Ferguson, A. Guha, C. Liang, R. Fonseca, and S. Krish-
namurthi. Hierarchical policies for software defined networks.
In Proceedings of the 1st Workshop on Hot Topics in Software
Defined Networking (HotSDN ’12), pages 37–42, 2012.

[26] D. Gelernter. Generative communication in Linda. ACM
Transactions on Programming Languages and Systems, 7(1):
80–112, 1985.

[27] K. Glerum, K. Kinshumann, S. Greenberg, G. Aul, V. Orgo-
van, G. Nichols, D. Grant, G. Loihle, and G. Hunt. Debugging
in the (very) large: Ten years of implementation and experi-
ence. In Proceedings of the 22nd Symposium on Operating
Systems Principles (SOSP ’09), pages 103–116, 2009.

[28] M. Golm, M. Felser, C. Wawersich, and J. Kleinöder. The JX
operating system. In Proceedings of the 2002 USENIX Annual
Technical Conference (ATC ’02), pages 45–58, 2002.

[29] M. P. Herlihy. Wait-free synchronization. ACM Transac-
tions on Programing Languages and Systems, 13(1):124–149,
1991.

[30] M. P. Herlihy and J. M. Wing. Linearizability: A correctness
condition for concurrent objects. ACM Transactions on Pro-
gramming Languages and Systems, 12(3):463–492, 1990.

[31] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed. ZooKeeper:
Wait-free coordination for Internet-scale systems. In Pro-
ceedings of the 2010 USENIX Annual Technical Conference
(ATC ’10), pages 145–158, 2010.

[32] J. Hunter and W. Crawford. Java servlet programming.
O’Reilly Media, 2001.

http://activemq.apache.org/
http://curator.apache.org/
https://github.com/coreos/etcd/
https://github.com/zk1931/jzab/
https://github.com/logcabin/

[33] M. Isard. Autopilot: Automatic data center management.
SIGOPS Operating Systems Review, 41(2):60–67, 2007.

[34] B. Johanson and A. Fox. The event heap: A coordination in-
frastructure for interactive workspaces. In Proceedings of the
4th Workshop on Mobile Computing Systems and Applications
(WMCSA ’02), pages 83–93, 2002.

[35] F. P. Junqueira, B. C. Reed, and M. Serafini. Zab: High-
performance broadcast for primary-backup systems. In Pro-
ceedings of the 41st International Conference on Dependable
Systems and Networks (DSN ’11), pages 245–256, 2011.

[36] B. Kalantari and A. Schiper. Addressing the ZooKeeper syn-
chronization inefficiency. In Proceedings of the 14th Interna-
tional Conference on Distributed Computing and Networking
(ICDCN ’13), pages 434–438, 2013.

[37] N. M. Karnik and A. R. Tripathi. Design issues in mobile-
agent programming systems. IEEE Concurrency, 6(3):52–61,
1998.

[38] T. Koponen, M. Casado, N. Gude, J. Stribling, L. Poutievski,
M. Zhu, R. Ramanathan, Y. Iwata, H. Inoue, T. Hama, and
S. Shenker. Onix: A distributed control platform for large-
scale production networks. In Proceedings of the 9th Sym-
posium on Operating Systems Design and Implementation
(OSDI ’10), pages 351–364, 2010.

[39] L. Lamport. The part-time parliament. ACM Transactions on
Computer Systems, 16(2):133–169, 1998.

[40] J. B. Leners, H. Wu, W.-L. Hung, M. K. Aguilera, and M. Wal-
fish. Detecting failures in distributed systems with the Falcon
spy network. In Proceedings of the 23rd Symposium on Oper-
ating Systems Principles (SOSP ’11), pages 279–294, 2011.

[41] D. Levin, A. Wundsam, B. Heller, N. Handigol, and A. Feld-
mann. Logically centralized? State distribution trade-offs
in software defined networks. In Proceedings of the 1st
Workshop on Hot Topics in Software Defined Networking
(HotSDN ’12), pages 1–6, 2012.

[42] V. Linnemann, K. Küspert, P. Dadam, P. Pistor, R. Erbe,
A. Kemper, N. Südkamp, G. Walch, and M. Wallrath. De-
sign and implementation of an extensible database manage-
ment system supporting user defined data types and functions.
In Proceedings of the 14th International Conference on Very
Large Data Bases (VLDB ’88), pages 294–305, 1988.

[43] M. Loui and H. Abu-Amara. Memory requirements for agree-
ment among unreliable asynchronous processes. Advances in
Computing Research, 4, 1987.

[44] J. MacCormick, N. Murphy, M. Najork, C. A. Thekkath, and
L. Zhou. Boxwood: Abstractions as the foundation for storage
infrastructure. In Proceedings of the 6th Symposium on Oper-
ating Systems Design and Implementation (OSDI ’04), pages
105–120, 2004.

[45] A. Omicini and F. Zambonelli. Coordination for Internet ap-
plication development. Autonomous Agents and Multi-Agent
Systems, 2(3):251–269, 1999.

[46] D. Ongaro and J. Ousterhout. In search of an understandable
consensus algorithm. In Proceedings of the 2014 USENIX An-
nual Technical Conference (ATC ’14), pages 305–320, 2014.

[47] N. W. Paton and O. Dı́az. Active database systems. ACM
Computing Surveys, 31(1):63–103, 1999.

[48] M. Pease, R. Shostak, and L. Lamport. Reaching agreement
in the presence of faults. Journal of the ACM, 27(2):228–234,
1980.

[49] D. Peng and F. Dabek. Large-scale incremental processing
using distributed transactions and notifications. In Proceed-
ings of the 9th Symposium on Operating Systems Design and
Implementation (OSDI ’10), pages 251–264, 2010.

[50] A. I. T. Rowstron. Using mobile code to provide fault toler-
ance in tuple space based coordination languages. Science of
Computer Programming, 46(1):137–162, 2003.

[51] A. I. T. Rowstron and A. M. Wood. Solving the Linda mul-
tiple rd problem using the copy-collect primitive. Science of
Computer Programming, 31(2-3):335–358, 1998.

[52] F. B. Schneider. Implementing fault-tolerant services using
the state machine approach: A tutorial. ACM Computer Sur-
vey, 22(4):299–319, 1990.

[53] E. J. Segall. Resilient distributed objects: Basic results
and application to shared tuple spaces. In Proceedings of
the 7th Symposium on Parallel and Distributeed Processing
(SPDP ’95), pages 320–327, 1995.

[54] M. Seltzer, Y. Endo, C. Small, and K. Smith. Dealing with
disaster: Surviving misbehaved kernel extensions. In Proceed-
ings of the 2nd Symposium on Operating Systems Design and
Implementation (OSDI ’96), 1996.

[55] A. Shakimov, H. Lim, R. Caceres, L. Cox, K. Li, D. Liu, and
A. Varshavsky. Vis-a-Vis: Privacy-preserving online social
networking via virtual individual servers. In Proceedings of
the 3rd International Conference on Communication Systems
and Networks (COMSNETS ’11), pages 1–10, 2011.

[56] J. W. Stamos and D. K. Gifford. Remote evaluation. ACM
Transactions on Programming Languages and Systems, 12(4):
537–564, 1990.

[57] M. Stonebraker, J. Anton, and E. Hanson. Extending a
database system with procedures. ACM Transactions on
Database Systems, 12(3):350–376, 1987.

[58] W. Vogels. Life is not a state-machine: The long road from
research to production. In Proceedings of the 25th Symposium
on Principles of Distributed Computing (PODC ’06), page
112, 2006.

	Introduction
	Background and Problem Statement
	A Model for Extensible Coordination
	System Model
	Requirements
	Types of Extensions
	Basic Extension Interface
	Extension Manager
	Extension Registration and Deregistration
	Extension Execution
	Fault Tolerance

	Limiting Extensions
	Basic Approach
	Extension Verification
	Extension Sandbox

	Discussion

	Implementations
	Extensible ZooKeeper
	ZooKeeper Architecture
	Making ZooKeeper Extensible

	Extensible DepSpace
	DepSpace Architecture
	Making DepSpace Extensible

	Evaluation
	Coordination Recipes
	Shared Counter
	Distributed Queue
	Distributed Barrier
	Leader Election

	Impact on Regular Clients
	Discussion

	Novel Use Cases for Coordination Services
	Software-defined Networks
	File-system Metadata Services

	Related Work
	Conclusion

