
Proactive Energy-Aware Programming with PEEK

Timo Hönig, Heiko Janker, Christopher Eibel, Wolfgang Schröder-Preikschat
Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU)

Oliver Mihelic, Rüdiger Kapitza
TU Braunschweig

Abstract

Optimization of application and system software for en-
ergy efficiency is of ecological, economical, and tech-
nical importance—and still challenging. Deficiency in
adequate tooling support is a major issue. The few tools
available (i.e., measurement instruments, energy profil-
ers) have poorly conceived interfaces and their integra-
tion into widely used development processes is missing.
This implies time-consuming, tedious measurements and
profiling runs and aggravates, if not shoots down, the
development of energy-efficient software.

We present PEEK, a systems approach to proactive
energy-aware programming. PEEK fully automates en-
ergy measurement tasks and suggests program-code im-
provements at development time by providing automati-
cally generated energy optimization hints. Our approach
is based on a combined software and hardware infra-
structure to automatically determine energy demand of
program code and pinpoint energy faults, thereby inte-
grating seamlessly into existing software development
environments. As part of PEEK we have designed a light-
weight, yet powerful electronic measuring device capa-
ble of taking automated, analog energy measurements.
Results show an up to 8.4-fold speed-up of energy analy-
sis when using PEEK, while the energy consumption of
the analyzed code was improved by 25.3 %.

1 Introduction

A holistic approach to optimize today’s computer sys-
tems for low energy demand includes, but is not limited
to, exploiting hardware energy saving features [1, 2]. In
fact, it goes far beyond hardware concerns, which is why
energy-aware software design is now in the spotlight and
subject of current systems research, in general. To opti-
mize software for energy efficiency, several distinct ap-
proaches have been proposed. Semi-automatic compiler
optimizations [3, 4, 5, 6] at architecture level are trans-

parent to the development process, but energy saving
features at platform level (i.e., dynamic voltage and fre-
quency scaling, sleep states) are exploited only partially.
Recent research has focused on optimizing program code
at a higher level of abstraction, such as programming lan-
guages [7] or runtime environments [8]. However, using
specially designed programming languages or runtime
environments implies radical changes for existing soft-
ware projects, which prevents widespread adoption.

Today, developers ultimately have two options for en-
ergy analysis of program code. Either they measure the
energy consumption using an electronic measuring in-
strument (i.e., multimeter, oscilloscope) [9, 10, 11] or
they analyze their program code using an energy pro-
filer [12, 13, 14, 15]. Either option is extremely time-
consuming as both options require manual operations ex-
ecuted by developers. For example, a developer needs
to complete many analysis iterations to pin down the
culprit of an energy fault1. These manual tasks are re-
quired as electronic measuring instruments and existing
energy profilers are controlled by standalone applications
which are poorly embedded into development toolchains
or integrated development environments, if at all. Hence,
compared to established software analysis facilities such
as profilers for runtime optimizations (e.g., GNU gprof),
the ease of use of existing tooling infrastructure is not di-
rect and straightforward but complex and cumbersome.

Increasingly often, software-based energy profilers
cannot even be used since the required energy models
for target hardware platforms are unavailable. As tech-
nology rapidly advances, it is a direct consequence of
the tremendous complexity of today’s hardware archi-
tectures and applies especially for embedded systems.
For example, as of this writing, even the smallest and
most energy-efficient [16] ARM processors (i.e., ARM
Cortex-M0+) already have a two-staged core pipeline

1An energy fault is the root cause for unnecessarily high energy con-
sumption that may result in a runtime error (deviation from target or
actual) or even entails failure (breakdown).

and their implementations come with various dynamic
energy saving features (e.g., different low-power modes).
Establishing trustworthy energy models for systems with
a similar or more complex architecture is difficult as,
among other aspects, inter-instruction effects, execution
modes (e.g., out-of-order execution), and integrated pe-
ripherals (e.g., memory controller) need to be consid-
ered [17]. Eventually, inaccurate or missing energy mod-
els lead to the desperate situation where developers are
unable to use software tools to reason about the energy
consumption of their program code. Instead, one has to
manually run tedious energy measurement series using
hardware energy measurement instruments.

Despite recent efforts, a breakthrough for practical
tooling support suitable for assisting developers during
the task of energy-aware programming is still missing.
Developers require solutions that fit into their software
development environments and workflows rather than in-
trusive approaches, which are cumbersome (if at all pos-
sible) to integrate. Intrusive approaches are particularly
unattractive as they are prone to introduce new functional
faults. Preferably, tooling support for energy-aware pro-
gramming smoothly fits into existing development en-
vironments and goes completely unnoticed during soft-
ware development as long as it is not used actively: just
as profilers for runtime optimizations are basically invis-
ible to developers until activation. However, once ac-
tivated, profound tooling support for energy-aware pro-
gramming needs to assist developers in various respects.
First, developers should receive guidance at identifying
energy faults in their program code (e.g., by means of
energy consumption data). With such energy consump-
tion data, developers pin down energy-intensive regions
of their program code and can further analyze whether
the energy consumption is actually justified (e.g., CPU-
intensive section) or the code contains an energy fault.
This requires a high degree of automation as developers
should no longer be required to run through lengthy man-
ual energy analysis. Second, not only data on the energy
consumption of program code is of interest to develop-
ers. They are especially keen to obtain hints and sug-
gestions on how to actually improve their code at hand
for energy efficiency. Challenging these two aspects en-
ables developers to proactively design energy-aware ap-
plications right at development time—we refer to this as
proactive energy-aware programming.

In this paper we present PEEK, a systems approach to
proactive energy-aware programming. PEEK improves
the development process of energy-aware software at
various levels. PEEK makes the following contributions:
First, a tooling infrastructure for automatic function-level
energy analysis of source code. Second, a tool that not
only provides energy consumption values of program
code but also reports energy optimization hints directly to

developers. Third, for fully automated and accurate en-
ergy measurements, an energy measurement instrument
in the form of a lightweight and yet powerful electronic
measuring device. All core components of PEEK will be
released under an open-source license.

The paper is organized as follows. In Section 2 we dis-
cuss the design and system architecture of PEEK. Sec-
tion 3 presents our work on energy optimization hints.
The implementation of the software and hardware com-
ponents is presented in Section 4. We evaluate PEEK in
Section 5, detail future work in Section 6, and discuss re-
lated work in Section 7. Section 8 concludes our work.

2 Design and System Architecture

PEEK is a proactive energy-aware development kit which
allows programmers to automatically measure the energy
consumption of program code at function level. To as-
sist developers at writing energy-efficient programs, it
is inevitable from the very beginning to keep them well
informed of the expected energy consumption. Hereby,
developers can reason about whether specific changes to
their program code have a positive or negative impact
on the energy consumption of their application. PEEK’s
central design objectives are automatization and adapt-
ability. Thus, we have designed our system to eliminate
manual operations commonly required for energy mea-
surements while hooking the required additional compo-
nents of our system into existing software development
infrastructures without interfering with established soft-
ware development processes.

We designed our system to be modular for three rea-
sons. First, to adapt to existing software development in-
frastructure we reuse existing tooling components with-
out modifying them (e.g., integrated development envi-
ronments, energy analysis tools, source code manage-
ment systems). Second, energy analysis carried out by
software energy profilers potentially involves resource-
intensive analyses that exploit parallelism by distributing
tasks to different computing nodes. Third, as availabil-
ity of energy measurement instruments may be limited, a
modular system structure enables multiple developers to
use a single instance of a measurement setup.

Accordingly, we detach tasks of energy-aware pro-
gramming from the actual energy analysis operations. As
a result, our tooling infrastructure is divided into front-
end, middle-end, and back-end components. The front
end implements an interface for the developer and soft-
ware development toolchain, it offers a well-defined API
for this purpose and controls the processing of data in-
volved during the energy analysis (i.e., source code, meta
data, and energy analysis results). The back-end compo-
nents implement and perform the actual energy analy-
sis. As energy analysis is specific to target hardware

Front End

Development Environment

Middle End

Revision Control System

Back End

Energy Analysis

Control Data Data ControlData

1
2

3

4

5

6

1 Commit and 2 submit snapshot. 3 Pull snapshot, perform energy analysis.

4 Commit results and 5 notify front end. 6 Fetch energy analysis results.

Figure 1: Overview of the PEEK system architecture and
workflow: our system detaches energy-aware program-
ming tasks from complex energy analysis operations.

platforms, PEEK does enforce nothing but the require-
ment that energy analysis must be performed at function
level. This permits the implementation and use of dif-
ferent energy-measurement and energy-estimation tech-
niques by different PEEK back ends. A back-end imple-
mentation is hardware-platform specific and implements
energy-analysis support for source code written in one or
more programming languages. PEEK itself is agnostic to
the programming language of the source code processed
during energy analysis. Conceptually, the middle end of
PEEK is a passive component of our system and main-
tains all data the front end and the back end are working
on during the analysis and furthermore archives previous
energy analysis data. Figure 1 shows an overview of the
modular PEEK system architecture.

The individual components of PEEK embrace and ab-
stract software components of existing development en-
vironments to exploit their already available functional-
ity. This eases the adoption of our approach as soft-
ware developers do not need to modify their existing
development infrastructure and established software de-
velopment processes remain unchanged. A PEEK front
end is implemented as part of an integrated development
environment, such as Apple Xcode, Eclipse, or an ad-
vanced programming editor (e.g., Emacs, vi), and im-
plements the actual user interface for developers. A
PEEK back end is a stand-alone component that performs
energy analysis tasks and generates energy optimiza-
tion hints. There are two different types of PEEK back
ends: software–hardware back ends and software-only
back ends. A software–hardware back end wraps con-
trolling mechanisms of an energy measurement instru-
ment (i.e., multimeter, oscilloscope) [9, 10, 11], whereas
a software-only back end abstracts interfaces of existing
energy profilers [12, 13, 14, 15]. Both back-end types
make energy measurement results available to developers
through the unified interface of the front end. As energy
measurement tasks potentially comprise complex oper-
ations, we use parallelization techniques and optionally
run the front-end and back-end components on different

nodes. On one hand, this allows us to exploit parallelism
features of energy profilers used by software-only back
ends. On the other hand, developers do not require local
access to energy measurement instruments when work-
ing with software–hardware back ends, as the energy
measurement instruments can be operated remotely. In
general, the PEEK middle end is a passive component
used to let both front end and back end exchange data
using a shared storage layer. PEEK uses the revision con-
trol system Git [18] as middle-end infrastructure and ex-
ploits its features for snapshot mechanisms. Our system
is designed to exchange components—as currently used
by our implementation of PEEK—for different ones. For
example, a different middle-end implementation may use
another revision control system (e.g., Mercurial [19]).

2.1 Snapshot-based Workflow
The front end coordinates the source code analysis per-
formed by the back end using remote commands. Fig-
ure 1 shows the sequence of actions of the workflow. To
submit source code for analysis purposes developers cre-
ate snapshots of their current work. For a submission,
they first prepare a version of their source code and com-
mit it to the middle end 1 as a new revision. A snapshot
includes the source code and meta data which, for ex-
ample, informs the back end about how the source code
is built and which target platforms are applicable. The
latter is necessary as energy analysis is platform spe-
cific and energy analysis tasks are dispatched to different
back-end components according to this information.

After the developer has committed a snapshot, the
front end subsequently sends a control message 2 to
instruct the back end to analyze the corresponding snap-
shot. After pulling the snapshot 3 from the middle end,
the actual energy analysis is performed. Once the analy-
sis completes, the back end submits the energy analysis
results 4 to the middle end and notifies 5 the front end
about the availability of the results. Eventually, the front
end pulls the energy analysis results 6 from the middle
end and passes them to the developer.

Software developers can take influence on the opera-
tion of the back-end components by explicitly defining
which functions of the submitted source code should be
analyzed. This mechanism is used to cut down energy
analysis efforts to the extent necessary. It is especially
useful when source code of complex applications with a
large number of functions is analyzed.

2.2 Multi-Snapshot Analysis
In the simplest case a developer submits a single snap-
shot s1 for energy analysis. This yields an energy analy-
sis for the specific version of the source code as regis-
tered by s1. However, developers are keen to compare

the energy consumption of different versions of their pro-
gram code (i.e., different implementations of one and the
same function) as this allows them to judge the impact
of their programming decisions on the energy demand of
their code. To address this, we use snapshot bundles.

With snapshot bundles it is possible to aggregate mul-
tiple source code snapshots and examine them jointly in
a single batch operation. A snapshot bundle Bid is a col-
lection of multiple snapshots which share a unique iden-
tifier Bid := 〈s1,s2,s3, . . . ,sn〉id . Developers aggregate
an arbitrary number of snapshots (e.g., representing dif-
ferent versions of their program code) and group them as
a snapshot bundle. Rather than individually instructing
the back end to analyze each snapshot, the front end dis-
patches a single batch evaluation. This is triggered by a
remote command which includes the identifier Bid of the
snapshot bundle. The back end then pulls all snapshots
belonging to the bundle and analyzes each snapshot. At
this level, back-end components can exploit parallelism,
for example, by distributing energy analysis tasks of each
snapshot to different nodes. When the energy analysis
has finished, all results are written back to the meta data
of each snapshot of the bundle. Eventually, the front end
proceeds and provides the results to the developer. Ex-
emplarily, the results for a single snapshot implementing
the Advanced Encryption Standard (AES) on an ARM
Cortex-M0+ platform are shown in Table 1.

It is mandatory for all PEEK back ends to provide en-
ergy analysis results at function level. Additional re-
sults (e.g., invocation count) are optional and specific to
each back end. We use reflection techniques to process
such optional data in the front end. When passing en-
ergy analysis results of a multi-snapshot analysis to the
developer, the front end calculates the energy offsets be-
tween each pair of snapshots belonging to the same snap-
shot bundle. This makes it convenient for developers to
compare different source code versions regarding their
energy consumption footprint and serves as decision-
making basis during energy-aware programming.

2.3 Input Data

Beside the source code itself, it is necessary to pass ad-
ditional data and configuration options from the front-
end components to the back-end infrastructure of PEEK.
Most importantly, it is required to supply the back-
end components with all data necessary to execute the
program code (e.g., input parameters, runtime options,
data sets). Furthermore, it requires a well-defined path
to hand over source-code specific configuration options
from the developer to the back end (e.g., build param-
eters, compile-time options). We pass such input data
from the front end to the back end via the middle-end
components as part of a snapshot.

Function Name Energy Invocation Count
aes mixColumns 1.14 µJ 13
aes expandEncKey 57.69 µJ 14
aes subBytes 84.56 µJ 14

Table 1: Energy analysis of an AES encryption (256-bit
key size, 16-bytes data) on an ARM Cortex-M0+ [22].

Functional testing of incremental changes is a com-
mon approach to ensure the correctness during the evolu-
tion of a software project [20, 21]. Unit testing provides
an efficient way for developers to implement test cases
which are executed automatically during the develop-
ment process, for example, when source code changes
are applied. However, unit tests commonly only verify
functional requirements of program code (i.e., correct-
ness). With PEEK we extend the scope of unit testing
mechanisms to also verify non-functional properties of
program code (i.e., energy consumption).

In order to efficiently supply input data to the back-
end infrastructure, we have designed PEEK to augment
existing software development technologies for this pur-
pose. Apart from passing bare call parameters using the
meta data of a snapshot, PEEK utilizes unit testing tool-
ing infrastructure (e.g., Google Test, LLVM LIT, JUnit)
for this purpose. Unit tests are passed to the back end
which will hereinafter use this input data to execute the
program code during energy analysis. Existing unit tests
previously only used for functional verification can be
reused for energy analysis without further modification.

2.4 Scalability Aspects

The energy analysis of an application commonly is a
resource-intensive task. After building the source code,
the application to be analyzed needs to be executed. In
order to gain energy analysis results for different runtime
configurations as defined by varying input data (e.g., pa-
rameters, unit tests), it is even necessary to run the appli-
cation several times during the energy analysis process.
To address this concern, back-end components need to
implement suitable optimizations to reduce the analysis
time, for example, by exploiting parallel execution.

The back-end components leverage snapshot bundles
to exploit parallelism at snapshot and bundle level. If a
back end provides corresponding support, we split up the
analysis process by distributing the evaluation for each
snapshot to individual nodes. Efficient grouping of snap-
shots paired with distributing the energy analysis to sev-
eral nodes allows us to proactively assist developers at
the task of energy-aware programming, because lengthy
round trips—as they occur when profiling applications
manually—are eliminated to the greatest extent. We out-
line the speed-up of the analysis process in Section 5.3.

3 Energy Optimization Hints

To reduce the energy consumption of software, devel-
opers are interested to obtain generated hints and sug-
gestions on how to actually improve their code for en-
ergy efficiency. With PEEK we present the concept for
energy optimization hints to address this concern. En-
ergy optimization hints are concrete proposals for pro-
gram code changes (e.g., source code patch) to achieve
energy savings for a provided application. We group en-
ergy optimization hints into two categories: (1) source
code changes and (2) build-environment modifications.

Source Code Changes. The energy demand of soft-
ware can be improved by source code changes in two
different ways. Either, the source code change improves
the program code to use available power management
features more efficiently, or, the program-code logic is
changed. For the former, we have implemented PEEK to
generate corresponding energy optimization hints (Sec-
tion 3.1), for the latter we work on cross-domain opti-
mization hints (Section 6) as part of our future work.

Build-Environment Modifications. Modifications to
the build environment are independent of actual source
code changes but also entail a potential to reduce the en-
ergy demand of program code (Section 3.2).

3.1 Power Management Features
Today, even smallest microcontrollers implement several
different hardware power management features. Despite
available documentation and specifications of the hard-
ware, it is often unclear how different power manage-
ment mechanisms (e.g., sleep states, dynamic voltage
and frequency scaling, clock gating) interact with each
other when executing a given program: it is extremely
difficult to find the right set of power management fea-
tures. For example, even tasks sharing the same ex-
ecution semantics (i.e., run-to-completion or blocking)
may require different sets of power management fea-
tures to achieve the best energy savings. We address
this challenge at back-end level by automatically gen-
erating different implementations of the source code un-
der test (Section 4.1.2) and subsequently running an en-
ergy analysis for each of the implementations. The most
energy-efficient implementation is eventually proposed
as an energy optimization hint. Listing 1 shows an en-
ergy optimization hint, where PEEK suggests to run a
task in a low-power run mode of the target platform. We
quantify the potential for energy savings in Section 5.2.

3.2 Libraries and Compilers
Further energy savings can be achieved by modifying
the build environment of the program code. On one
hand, linker options can substitute standard libraries

--- task.c 2014-08-28 09:26:03 +0200

+++ task.c 2014-08-28 09:26:19 +0200

@@ -1,19 +1,22 @@

void pm_set_mode(void) {

- /* Normal-power run mode */

- SMC->PMCTRL &= ~SMC_PMCTRL_RUNM_MASK;

- MCG->C2 &= ~MCG_C2_LP_MASK;

+ /* Low-power run mode */

+ SMC->PMCTRL &= ~SMC_PMCTRL_RUNM_MASK;

+ MCG->SC &= ~MCG_SC_FCRDIV_MASK;

+ MCG->SC |= 0x02 << MCG_SC_FCRDIV_SHIFT;

+ MCG->C2 |= MCG_C2_IRCS_MASK;

MCG->C1 &= ~MCG_C1_CLKS_MASK;

- MCG->C1 |= MCG_C1_CLKS(0);

- MCG->C1 |= MCG_C1_IREFS_MASK;

- while(!(MCG->S & MCG_S_IREFST_MASK));

- while(((MCG->S & 0xc) >> 0x2) != 0x0);

+ MCG->C1 |= MCG_C1_CLKS(1);

+ while(!(MCG->S & MCG_S_IRCST_MASK));

+ while(((MCG->S & 0xc) >> 0x2) != 0x1);

+ MCG->C2 |= MCG_C2_LP_MASK;

SystemCoreClockUpdate();

- run_mode = RUN_FAST;

+ run_mode = RUN_LP;

+ SMC->PMCTRL |= SMC_PMCTRL_RUNM(2);

}

void task(void) {

/* Set power mode */

pm_set_mode();

/* Perform work */

task_work();

}

Listing 1: Implementation of an energy optimization hint
which executes a task in a low-power run mode.

with hardware-specific ones in order to exploit special-
purpose hardware units [23]. On the other hand, com-
piler infrastructures and specific compiler flags have also
a significant impact on the energy consumption of the ap-
plication [4, 6]. Changes reflecting such optimizations
affect the build infrastructure of a snapshot (e.g., make-
files, GNU Autoconf, or Apache Ant) but do not alter the
source code of the program itself. As shown by our eval-
uation, using a different compiler infrastructure can be a
simple, yet effective measure to gain significant energy
savings (Section 5.1).

3.3 Integration
We have designed PEEK to support energy optimization
hints belonging to both categories, source-code changes
and build-environment modifications. To propagate en-
ergy optimization hints to the developer, PEEK provides
the functionality to pass optimization proposals (source
code changes representing an energy optimization hint)

from the back end to the front end. The back-end imple-
mentations use previously deposited, platform-specific
information (e.g., power management features, special-
purpose libraries, compiler flags) to transform existing
snapshots into new, potentially more energy-efficient
snapshots. For this purpose, we allow the back end to
create snapshots and add them to a snapshot bundle.

To generate energy optimization hints, the back end
initially takes a snapshot s p proposed by the developer
and analyzes the source code of s p for optimizations.
If the back end finds potential improvements, it corre-
spondingly creates a new snapshot s p′ which is a copy
of s p including the changes representing the optimiza-
tion hints. Subsequently, the back end commits s p′ and
adds s p′ to the original bundle of s p. An energy analy-
sis of the newly added snapshot s p′ is performed subse-
quently. Once finished, the front end is notified about the
availability of analysis results; the front end recognizes
that a new snapshot has been added. Energy optimization
hints are passed to the developer by showing differences
of the source code of s p and s p′ . Eventually, developers
review the source code changes of the energy optimiza-
tion hints and merge the desired changes into the original
main development branch.

4 Implementation
We have implemented PEEK to demonstrate the poten-
tial of our approach to energy-aware programming. Our
implementation combines a software stack, which we
present in Section 4.1, with an energy measurement de-
vice we have designed to implement fully automated en-
ergy measurements, presented in Section 4.2.

4.1 Software
Our implementation of PEEK uses XML-RPC for inter-
process communication of the front-end and back-end
components, and YAML [24] to transfer meta data be-
tween the front end and the back end. Our middle-end
infrastructure uses Git [18].

4.1.1 Core Implementation
The implementation of PEEK is aligned to the system de-
sign presented in Section 2. We focused on implement-
ing a system that seamlessly integrates into existing de-
velopment processes widely used by software develop-
ers. The front end is implemented as an extension to the
integrated development environment (i.e., Eclipse). We
decided to use the revision control system Git as middle
end due to its wide adoption as well as its rich feature set
and decentralized system structure. We further imple-
mented two different back ends for PEEK. One back end
provides energy analysis based on fully automated hard-
ware energy measurements, the second back end imple-

Git Repository Operation Modes

Energy Analysis

1 Initial State

2a

2b

m

Master

Legend

Branch (stub)

Branch (populated)

Branch (with results)

2a Single Snapshot

b

Branch

b

2b Multiple Snapshots

b1b2b3

Bundle

Energy Analysis

Results Results

b1b2b3

Figure 2: PEEK implements single- and multi-snapshot
operation modes for energy analyses of source code.

ments energy analysis techniques using software compo-
nents only. We discuss the implementation of the back
ends separately in Section 4.1.2.

Rather than altering existing infrastructure or chang-
ing programming habits of developers, we add the front-
end and back-end components and jointly use Git as mid-
dle end without affecting established development work-
flows. With the chosen set of components, PEEK in-
tegrates seamlessly into familiar environments and can
easily be adopted by software projects using Git for revi-
sion control purposes.

Single-Snapshot Operation. PEEK’s snapshot mech-
anism is implemented using Git branches (see Figure 2).
Our implementation of the front-end component cre-
ates a new Git branch whenever a developer submits
a snapshot for analysis purposes. The newly created
branch b is first pushed to the Git repository of the soft-
ware project. Subsequently, the front end sends a control
message analyze〈b〉 to the back end in order to trigger
the evaluation of the snapshot. The control message con-
tains the name of the branch so that the back end pulls
the correct snapshot for the energy analysis. The back
end performs the energy analysis at function level and
pushes the results to the branch that contains the current
snapshot. Once done, the back end calls notify〈b〉 to
inform the front end of the availability of the results.

Multi-Snapshot Operation. If different revisions of
source code are to be compared regarding their energy
efficiency, developers submit several snapshots. Our im-
plementation exploits Git’s tagging features to imple-
ment snapshot bundles (Section 2.2). All Git branches
of the snapshots which belong to the same snapshot
bundle are tagged with a unique tag t . Once the
tagged branches 〈b1,b2,b3, . . . ,bn〉t are pushed to the
Git repository, the front end sends the control message
analyze〈t〉 to the back end. To fetch the entire snapshot
bundle the back end then pulls all branches with the given
tag t , analyzes each branch b i and sends notify〈b i〉
for each finished energy analysis to inform the front end
about the progress. Figure 2 shows an overview of the
single- and multi-snapshot operations.

Energy Optimization Hints. If a back-end imple-
mentation finds potential optimizations for the submitted
source code, it generates and applies the corresponding
code changes and pushes new branches to the Git repos-
itory. The branches 〈bn+1,bn+2,bn+3, . . .〉t contain the
changes proposed to gain energy savings. Before prop-
agating the energy optimization hints to the developer,
an energy analysis for the newly created branches is per-
formed. Once the energy analysis results are available,
the back end pushes them to the corresponding branches
and the front end recognizes the new branches allocated
to the snapshot bundle previously submitted for analysis.

4.1.2 Back-End Implementation

We have implemented two different back ends for PEEK:
a software–hardware back end that takes fully auto-
mated hardware energy measurements and a software-
only back end that performs energy analysis techniques
using a software energy profiler. The implementations
of the two back ends share a similar code structure
and provide the same interfaces towards the front-end
components of PEEK. All back-end implementations
are hardware-platform specific and implement energy-
analysis support for source code written in one or more
programming languages.

Software–Hardware Back End. To implement fully
automated hardware energy measurements, we designed
and built an energy measurement board based on the con-
cepts of a current mirror (Section 4.2.2). The latter is op-
erated by an ARM Cortex-M4 microcontroller connected
to a host running the PEEK back-end components. The
device is designed to take energy measurements of arbi-
trary hardware architectures or platforms.

Our software–hardware back end supports energy
analysis for the ARM Cortex-M0+ processor [16], which
is the most energy-efficient ARM processor to date. To
prepare the energy consumption analysis, the back end
first extracts the functions which are requested to be an-
alyzed from the meta data of the snapshot. The mea-
surement is started at the entry of a function and stopped
upon its exit. We insert signals for triggering the start and
end of a measurement by instrumenting the source code.
When a nested function is called, we optionally interrupt
the measurement during the execution of the callee. The
overhead of our code instrumentation is negligible as we
only need a single CPU cycle for each trigger signal.

To implement energy optimization hints, the back end
generates program code that executes the relevant func-
tions of the source code with different sets of power
management features. Power management features are
target-platform specific and the back end leverages the
snapshot bundles to pass energy optimization hints to the
developer (i.e., modified source code with energy analy-
sis results). For example, our evaluation platform imple-

Sampling points of an analog-to-digital converter, ∆t = 140.0 ns

I/mA

64

56

Current draw of an ARM Cortex-M4 microcontroller

0 160t/ns

Figure 3: The undersampling of analog-to-digital con-
verters leads to inaccurate energy measurement results.

ments an ARM Cortex-M0+ core with 11 different power
saving modes. The best energy optimization hint reduced
the energy consumption by 25.3 % (Section 5.2).

Software-Only Back End. We have implemented a
second back end for PEEK which uses software compo-
nents only. For energy profiling purposes, this back end
uses SEEP [14], which is an energy profiler providing
multi-path energy analysis of source code. The energy
profiler creates energy consumption estimates using en-
ergy profiles (i.e., instruction-based energy models) and
is optimized for the TI MSP430 processor [25].

The back end first executes the code symbolically.
During this symbolic execution run, the back end extracts
valid input parameters for the different code paths of the
application under test. Subsequent to this, binaries with
concrete input data are created, which are used for fur-
ther runtime analyses in order to calculate energy con-
sumption estimates at function level. To cut down analy-
sis times we extended the back end to distribute analysis
tasks to multiple nodes. This addresses scalability con-
cerns for complex energy analysis scenarios as discussed
in Section 2.4. We show numbers on scalability aspects
in our evaluation (Section 5.3).

4.2 Hardware
To run fully automated, accurate energy measurements
we have designed and implemented a lightweight, yet
powerful electronic measurement instrument for PEEK.

4.2.1 Measuring Energy Consumption

Commonly, the voltage drop across a resistor (shunt)
is measured to determine the energy consumption of a
device under test (DUT). The voltage drop is propor-
tional to the current draw of the DUT as visualized in
the graph of Figure 3. Multiplying the electrical cur-
rent with the operating voltage of the device results in
the power consumption. Integrating the power consump-
tion over the measurement time eventually leads to the
energy consumption of the DUT. However, the sampling

VCC VCC VCC

DUT

R S

QQ

IM1 IM2

T1 T2

ID

Cortex-M4

USB

CM1 CM2

Figure 4: Our fully automated energy measurement device exploits a current mirror for analog energy measurements.

rate of analog-to-digital converters (ADCs) is often too
low in order to provide accurate measurement results.
Even microcontrollers implementing a more precise ap-
proach by chaining several analog-to-digital converters
are prone to miss spikes in the current drawn by the
DUT during measurement. We show this in Figure 3,
where the sampling rate of an ADC employed by an
STM32F407VG microcontroller [26] is insufficient in
order to accurately capture the waveform of the electrical
current. A high-performance digital storage oscilloscope
with differential current probes can overcome these sam-
pling constraints. However, setting up measurements
with such a device is a tedious and error-prone process,
making this approach infeasible for automatic measure-
ments. Widely used outlet meters (e.g., Kill-A-Watt [27])
are unsuitable, as they commonly suffer from a sampling
rate of 1 Hz (or worse), only provide a coarse-grained
measurement resolution, and do not implement conve-
nient data acquisition interfaces.

4.2.2 Energy Measurement Device

To implement fully automated, accurate energy measure-
ments, PEEK requires a measurement device which does
not suffer from sampling constraints, provides a high
resolution, and offers a flexible, software-controllable
data acquisition interface. As we were unable to find a
suitable energy measurement device which satisfies the
above requirements, we designed a new energy measure-
ment instrument as part of our work on PEEK.

In our previous work on energy-aware program-
ming [14, 28] we presented the first prototype for a non-
discrete energy measurement device (i.e., an energy mea-
surement device which does not sample). This early pro-
totype implemented a simple, yet effective analog en-
ergy measurement circuit and was based on work by
Konstantakos et al. [29]. With PEEK we present a re-
vised energy measurement device with a larger set of
features (e.g., microcontroller operation, automatic cali-

bration), extended practicability (e.g., support for a wide
range of currents) while keeping its unique characteris-
tics untouched (i.e., analog energy measurements with-
out suffering from sampling rate limitations). The new
measurement device fulfills all requirements of PEEK
and is used for fully automated energy measurements.

The core of the measurement device implements a
transistor circuit exploiting the concepts of a current mir-
ror, paired with a flip-flop to implement a current-to-
frequency conversion. The transistor circuit consisting
of three PNP transistors mirrors the input current IDUT of
the device under test (DUT) to the mirrored currents IM1
and IM2. As long as the input current IDUT is being drawn
the current mirror circuit operates as follows: Under the
control of an RS flip-flop, the two capacitors CM1 and
CM2 are being charged and discharged alternately. When
the RS flip-flop outputs a logical 1 on the output Q, the
path IM1 is pulled to ground via the transistor T2. The
path IM2, however, is allowed to charge up the capac-
itor CM2. Once CM2 reaches a voltage level which the
flip-flop recognizes as a logical 1, the flip-flop will tog-
gle the output Q. Now, the path IM2 is shorted to ground,
while path IM1 is charging up its capacitor CM1. During
each cycle, one capacitor charges, while the other one is
being discharged. The switching frequency of the out-
put Q is directly proportional to the current IDUT. This
signal is eventually used by our device to calculate the
energy consumption of the DUT. The block diagram in
Figure 4 shows the core board schematics.

4.2.3 System Integration

To implement fully automated energy measurements we
integrated a microcontroller directly onto the circuit
board. Figure 4 shows a photo of the PEEK electronic
measurement instrument.2 We use an ARM Cortex-M4
microcontroller (STM32F405RG [26]), which controls

2The total cost for the electronic measurement instrument (circuit board
including all components) is approximately USD 80.

0

0.5

1E
n
e
rg

y

0

0.5

1

R
u
n
ti
m
e

N
o
rm

a
li
ze
d

A
b
so
lu
te

N
o
rm

a
li
ze
d

A
b
so
lu
te

41
.1
0
µJ

14
.4
1
µJ

19
56
.0
8
µJ

68
3.
48

µJ

33
.7
5
µJ

11
.8
9
µJ

48
.3
3
µJ

23
.4
6
µJ

0.
15

µJ
0.
11

µJ

0.
30

µJ
0.
22

µJ

0.
87

µJ
0.
65

µJ

0.
28

µJ
0.
22

µJ

17
.0
1
µJ

20
.7
2
µJ

0.
80

µJ
1.
17

µJ

10
.9
8
m
s

1.
04
m
s

52
2.
04
m
s

49
.3
0
m
s

89
47
.0
9
µs

84
4.
24

µs

20
.3
3
m
s

1.
92
m
s

66
.5
5
µs

6.
30

µs

13
0.
21

µs
12
.2
6
µs

60
1.
13

µs
56
.8
4
µs

14
7.
88

µs
13
.9
3
µs

19
.1
1
m
s

1.
81
m
s

12
64
.1
9
µs

11
9.
59

µs

−64.9% −65.1% −64.8%
−51.5%

−26.7% −26.7% −25.3% −21.4%

+17.9%
+31.6%

−90.5% −90.6% −90.6% −90.6% −90.5% −90.6% −90.5% −90.6% −90.5% −90.5%

cnt adpcm compress crc bs fac duff janne insertsort recursion

Normal-Power ModeLow-Power Mode

Figure 5: The energy consumption and runtime of benchmark modules running in different power modes.

the energy measurement and provides a host interface
that we utilize for the PEEK back end presented in Sec-
tion 4.1.2. Code instrumentation to start and stop energy
measurements is minimally invasive: a single CPU cycle
is required to trigger start or stop signals. The measure-
ment device seamlessly fits into the PEEK infrastructure
as it is easily adoptable while providing accurate energy
measurement results. The device can also be used as a
standalone energy measurement device.

5 Evaluation

In this section, we evaluate the software and hardware
components of our PEEK implementation using four dif-
ferent scenarios. First, we perform an energy analysis for
several benchmark modules running on our evaluation
platform, an ARM Cortex-M0+ microcontroller. Second,
we use PEEK to generate energy optimization hints for
an application and measure the effect on the energy con-
sumption of the code. Third, we measure time savings
achieved by using PEEK compared to using a traditional
energy profiling approach. Fourth, we present results of
a hands-on experiment with students using our system.

5.1 Energy Measurements

We take fully automated energy measurements us-
ing PEEK to analyze the energy consumption of the
Mälardalen benchmark suite [30], which provides a va-
riety of modules implementing common usage scenar-
ios. To evaluate all aspects of PEEK we choose a mi-
crocontroller with a wide array of energy saving fea-
tures. Our evaluation platform, an ARM Cortex-M0+
microcontroller (Freescale Kinetis KL02 [22]), offers 11
different power modes: two run modes and nine sleep
modes. We first execute all modules of the benchmark
suite in the two run modes (i.e., low power and nor-

mal power) of the evaluation platform to demonstrate
their effect (see Figure 5). In a second experiment PEEK
compiles the benchmark modules with different compil-
ers (i.e., LLVM Clang 3.4, GNU GCC 4.8) but same
optimization level (i.e., -Os) and measures the energy
consumption of the compiled binaries running in normal-
power mode on the evaluation platform (see Figure 6).

The energy Erun required to execute a benchmark mod-
ule is calculated by integrating the time function of the
power consumption p(t) over the time trun = t1− t0 re-
quired to execute the benchmark module:

Erun =

t1∫
t0

p(t) ·d t

Power-Mode Energy Impact. We execute the bench-
mark modules in low-power mode and normal-power
mode to measure the impact of power modes on the en-
ergy consumption of the evaluation platform. Figure 5
shows the results of the energy analysis of PEEK.

All benchmark modules have run-to-completion se-
mantics as they are non-blocking applications. Accord-
ingly, it depends on the power consumption p(t) over the
execution time trun whether it requires more energy to
run a benchmark module in a normal-power mode or in
a low-power mode. Applications with run-to-completion
semantics commonly require less energy when they are
executed in a normal-power mode. This is because the
reduced performance of a low-power mode results in
longer execution times, eventually leading to increased
energy consumption. Executing the application in a
normal-power mode (i.e., higher power consumption but
significantly shorter execution time) and entering a sleep
state afterwards therefore consumes less energy. This
is why race-to-sleep strategies [31, 32] are commonly
used, in which run-to-completion tasks are executed in a
normal-power mode before entering a sleep state.

0

0.5

1

E
n
e
rg

y

0

0.5

1

R
u
n
ti
m
e

N
o
rm

a
li
ze
d

A
b
so
lu
te

N
o
rm

a
li
ze
d

A
b
so
lu
te

0.
65

µJ
0.
86

µJ

2.
20

µJ
2.
65

µJ

68
2.
48

µJ
75
2.
90

µJ

20
.7
2
µJ

21
.4
1
µJ

17
.3
7
µJ

20
.4
7
µJ

11
.8
9
µJ

12
.6
6
µJ

59
.5
8
µJ

60
.6
9
µJ

10
.2
5
µJ

10
.3
5
µJ

6.
39

µJ
5.
07

µJ

3.
75

µJ
0.
42

µJ

56
.8
4
µs

74
.3
0
µs

15
5.
14

µs
18
4.
24

µs

49
.3
0
m
s

53
.7
5
m
s

1.
81
m
s

1.
66
m
s

1.
25
m
s

1.
46
m
s

84
4.
24

µs
90
1.
42

µs

4.
31
m
s

4.
38
m
s

71
6.
68

µs
73
1.
78

µs

45
1.
98

µs
35
6.
80

µs

26
0.
38

µs
45
.2
7
µs

−24.4% −17% −9.4% −3.2% −6.1% −1.8%
−15.1%

−0.97%

−20.7%

−88.8%

−23.5% −15.8% −14.4%−8.3% −6.3% −1.6% −2.06%
−21.1%

−8.3%

−82.6%

duff fdct adpcm insertsort sqrt compress prime jfdctint nsichneu cover

ClangGCC

Figure 6: The energy consumption of benchmark modules differs depending on the compiler by up to 88.8 %.

Our evaluation results show that on average, execut-
ing the benchmark modules in low-power mode takes
about ten times longer compared to normal-power mode.
However, the results reveal that the energy consump-
tion is not proportional to the runtime required to ex-
ecute each module. Two of the benchmark mod-
ules (i.e., insertsort and recursion) even consume
greater energy in normal-power mode. The module
recursion requires 31.6 % more energy in normal-
power mode (Erun = 1.17µJ, trun = 119.6µs) compared
to low-power mode (Erun = 0.80µJ, trun = 1264.2µs).
We reproduced the results of the experiment on a second
evaluation platform to rule out a hardware defect. As the
assemblies of the benchmark modules and the evaluation
setup are exactly the same for the runs in normal-power
mode and low-power mode, we conclude the internal ar-
chitecture of the microcontroller to be the cause for these
results of our experiment.

On the one hand, the results of our experiment reveal
that energy consumption most often is not proportional
to runtime, and race-to-sleep strategies can lead to en-
ergy penalties of up to 31.6 %. On the other hand, the
experiment highlights the importance of real energy mea-
surements, as instruction-based energy models (as used
by software-based energy profilers) would have been un-
able to lead to these results.

Compiler Energy Impact. In a second experiment,
we use PEEK to analyze energy consumption of the
benchmark modules using different compilers (LLVM
Clang 3.4, GNU GCC 4.8). The experiment executes
the benchmark modules in the normal-power mode of
the evaluation platform. Clang and GCC generate pro-
gram code with different energy footprints, however, no
general trend can be derived from the results (Figure 6):
Some modules consume less energy when they are com-
piled with Clang, other modules consume less energy
when they are compiled with GCC. As both compilers
share the same call parameters (i.e., compiler flags, com-

mand line options) it is straightforward to choose the bet-
ter compiler on a case-by-case basis. Accordingly, PEEK
automatically generates the corresponding energy opti-
mization hints for each of the benchmark modules. The
benchmark module cover requires significantly less en-
ergy if it is compiled by Clang (Erun = 0.42µJ) compared
to GCC (Erun = 3.75µJ). We analyzed the assemblies
and found the root cause to be inter-procedural compiler
optimizations specific to Clang.

The results of this experiment show that it is important
to analyze source code on a case-by-case basis in order to
pick the right set of building infrastructure. As shown by
our experiment the energy consumption can be reduced
by up to 88.8 %, just by choosing a different compiler.

5.2 Energy Optimization Hints
To further evaluate the generation of energy optimization
hints (Section 3) we use PEEK to analyze an application
consisting of two tasks. The first task Tsample reads sen-
sor data from a triple-axis accelerometer and performs
pre-calculations, whereas the second task Ttrans f er imple-
ments an encrypted data transmission (AES) of the calcu-
lated data using a wireless radio. We use the open-source
operating system Contiki [33] to execute the application
on our evaluation platform.

We first create a snapshot of the source code (i.e., ap-
plication source code, Contiki) using the front-end com-
ponents. At back-end level, PEEK uses previously de-
posited information on the target platform (i.e., power
modes) to automatically inject the use of different power
modes for both tasks of the application. With this in-
formation, PEEK creates four new source code revisions:
Two of the revisions keep both tasks of the application
running in the same power mode (e.g., normal-power
mode, low-power mode). For the third and fourth re-
vision, PEEK alternates the use of power modes by in-
jecting the corresponding code to switch power modes at
runtime. For all four revisions, PEEK subsequently runs

0

5

10

n

l
E
n
e
rg

y
in

m
J

Revision 1 Revision 2 Revision 3 Revision 4

10.61
12.41

7.92
9.80

Task 1, Task 2

—

Task 1

Task 2

Task 2

Task 1

—

Task 1, Task 2

Task 1: Tsample Task 2: Ttransfer : Normal/Low-Power Moden l/

Figure 7: Energy optimization hints generate new revi-
sions of source code with varying energy footprints.

an energy analysis to determine the energy footprint for
each of them and stores the resulting data (i.e., energy
consumption results) jointly with the new source code
revisions in the middle-end infrastructure and allocates
new snapshots to the original snapshot bundle. Eventu-
ally, the front end recognizes the new snapshots as energy
optimization hints and announces their availability.

The most effective energy optimization hint leads to
the third source code revision (see Figure 7). In this
revision, task Tsample executes in low-power mode and
task Ttrans f er executes in normal-power mode. The en-
ergy costs for switching power modes are 3.0 µJ (normal
to low power) and 0.7 µJ (low to normal power). In the
most energy-efficient revision, the entire application re-
quires 7.92 mJ to execute. This is an improvement of
25.3 % compared to the energy consumption of the orig-
inal source code. In the original source code (represented
by the first revision) the application consumes 10.61 mJ.

5.3 Energy Analysis Time Savings
We conduct an experiment to measure the time savings
achieved by using PEEK compared to using a traditional
energy profiler (i.e., SEEP [14]), which is the baseline.

During our experiment we perform batch energy
analyses of five source code snapshots using different
sets of tools. In the first scenario (baseline) we use a de-
velopment environment with a plain energy profiler. For
the second scenario, we change the set of tools by us-
ing PEEK for energy profiling. In the third scenario, we
leave the set of tools unchanged compared to scenario
two but we move the back end of PEEK away from the
local developing system to a dedicated node on the same
network with more processing power. The objective is to
use the different sets of tools available in each scenario to
identify the snapshot with the smallest energy footprint.
This objective is kept the same for all three scenarios.

Figure 8 shows the total time required to identify the
snapshot with the smallest energy footprint and the num-
ber of manual operations (e.g., task activations, file op-
erations) performed during the analysis. Our experiment
takes at least 5.1 times as long without extended tooling

Energy Analysis Processing Time Manual Operations

Scenario 1 (Baseline)

Without PEEK

Scenario 2

PEEK (Local)

Scenario 3

PEEK (Distributed)

3m
in
38
s

27
Op

s.

0m
in
43
s

−80.3%

3 O
ps
.

−88.9%

0m
in
26
s

−88.1%

3 O
ps
.

−88.9%

Figure 8: Energy analyses with PEEK reduce the number
of manual operations and cut down analysis times.

support, compared to scenarios where the energy analy-
sis is performed by PEEK. We even achieve a 8.4-fold
speed-up in the third scenario. At the same time, PEEK
reduces the amount of manual operations to a ninth. The
results for the third scenario show that additional hard-
ware resources help PEEK to further decrease the time
required for energy analysis considerably (43 s vs. 26 s).

5.4 Hands-On Experiment

To evaluate the experience of working with our tooling
infrastructure, we conducted a hands-on experiment. We
asked two students of a systems programming class to
work on different AES implementations running on a
mobile platform. The assignment for the participants
was to initially create two different implementations of
AES and to optimize the implementations for energy
consumption. The students were asked to achieve this by
comparing the differences in energy behavior of the two
versions, and to improve the implementations for lower
energy consumption guided by our tooling support. The
participants further took energy measurements using a
prototype of our measuring device to determine the en-
ergy consumption at hardware level. Subsequent to the
hands-on experiment, the participants were asked to re-
port on their experiences during an interview.

The students preferred using our software tooling in-
frastructure over using a hardware measuring device as
it greatly shortened the analysis process. During their
work, the participants repeated the analysis process many
times over, exceeding 30 times per day, which high-
lights the relevance of the time saving achieved through
PEEK (Section 5.3). To improve the tooling infrastruc-
ture, the participants asked for additional indicators to
increase the understanding of the observed energy behav-
ior of their code (e.g., further energy optimization hints).

The hands-on experiment confirms that the speed-up
of the analysis process through PEEK is critical to de-
velopers and that support for energy analysis is a great
assistance to developers in order to make meaningful de-
cisions while programming energy-efficient code.

6 Future Work

Developers rely on exhaustive tool support for building
software. In contrast to established tools (debuggers,
profilers for runtime optimizations), future software de-
velopment environments will increasingly focus on rais-
ing the degree of automatization to cope with complexity
of today’s software projects—PEEK is one example for
such extensions to existing developing infrastructures.

Tooling Integration. An important part of our future
work on PEEK is the efficient combination of different
software development tools. Today, unit tests are a well-
established approach to reveal software defects automat-
ically. Apart from that, our system already exploits exist-
ing unit tests and reuses them for input data (Section 2.3).
To leverage resources spent on runtime analysis much
better, it is important to join different approaches: One
and the same run of a unit test should jointly verify func-
tional requirements (i.e., correctness) and non-functional
requirements (i.e., energy consumption).

Cross-Domain Optimization Hints. Currently, PEEK
generates energy optimization hints which are solely fo-
cusing on optimizing the energy consumption of pro-
gram code. However, a lower energy footprint may
entail an impact on resources of other system do-
mains (e.g., memory consumption, I/O). We consider it
crucial to detect and quantify such side effects as de-
velopers may require assistance in their decision making
process. We will implement corresponding cross-domain
optimization hints to support developers.

Measurement Enhancements. We will further im-
prove our hardware measurement device presented in
this work (Section 4.2.2) to implement fine-grained en-
ergy measurements at hardware level, which allow the
attribution of energy consumption to different hardware
components (e.g., memory, network, radio). Further as-
sistance in optimizing energy consumption may be pro-
vided by an additional energy tracing functionality. This
would assist the developer with automatic energy mea-
surements on a function level during runtime.

We will release the measurement device (schematics,
tools) under an open-source license on the project page
https://www4.cs.fau.de/Research/PEEK.

7 Related Work
Operating system research on optimizing systems (of ar-
bitrary size) for low-energy footprints was initiated by
early work on energy-aware runtime aspects (i.e., process
scheduling) by Weiser et al. [1] and energy-proportional
computing by Barroso et al. [2].

Compiler optimizations [3, 4, 5, 6] are an important
factor as they have a significant impact on the energy
consumption of program code. However, architecture-

level optimizations (i.e., instruction set) do not ad-
dress runtime power management features at platform
level (i.e., sleep states [34], dynamic voltage and fre-
quency scaling [35]). In addition to this, our evalua-
tion of PEEK (Section 5) shows that it pays to analyze
case-by-case which compiler generates the most energy-
efficient assembly for a given program code.

Energy profilers [12, 13, 15, 36] have a long tradi-
tion in the operating systems research community. Com-
monly, energy profilers use indirect measures (e.g., per-
formance counters [37]) to estimate the energy consump-
tion of program code. This includes our own previous
work on exploiting symbolic execution for energy-aware
programming [14, 28].

PEEK integrates well with the above techniques from
the related domains of energy-aware compilers and en-
ergy profilers. Furthermore, the use of energy-saving
features at system level can be optimized by PEEK either
through measurements or—if specifically supported—in
form of optimization hints.

8 Conclusion

This paper presents PEEK, a systems approach to proac-
tive energy-aware programming. PEEK implements fully
automated energy measurement techniques which pro-
vide developers with energy consumption measurements
at function level. Our approach embraces components of
existing software development infrastructures and com-
plements established development processes.

Automatically generated energy optimization hints of
PEEK assist developers at resolving energy faults early
during the software development process. Our soft-
ware infrastructure is supplemented by a lightweight, yet
powerful microcontroller-operated measurement device
which takes analog energy measurements.

PEEK achieves an 8.4-fold speed-up of energy analysis
while improving the energy consumption of the analyzed
source code by up to 25.3 %. The evaluation results show
that a combination of mature tooling infrastructure and
profound energy measurement setup is inevitable to en-
able developers to optimize their code proactively, right
at development time.

Acknowledgments

We thank Tobias Distler, Thao-Nguyen Do, Peter Wäge-
mann, Laura Lawniczak, Johannes Schilling, Ying Qu,
Björn Cassens, the anonymous reviewers, and our shep-
herd, Doug Terry, for their insightful comments and feed-
back. This work was supported by the German Research
Foundation (DFG), in part by Research Unit FOR 1508
under grant no. KA 3171/3-1 and SCHR 603/11-1 and
Transregional Collaborative Research Centre ”Invasive
Computing” (SFB/TR 89, Project C1).

https://www4.cs.fau.de/Research/PEEK

References

[1] M. Weiser, B. Welch, A. Demers, and S. Shenker.
Scheduling for reduced CPU energy. In Proceed-
ings of the 1st Conference on Operating Systems
Design and Implementation, pp. 449–471, 1994.

[2] L. A. Barroso and U. Hölzle. The case for en-
ergy–proportional computing. IEEE Computer,
40(12):33–37, 2007.

[3] M. T. Kandemir, N. Vijaykrishnan, M. J. Irwin, and
W. Ye. Influence of compiler optimizations on sys-
tem power. In Proceedings of the 37th Annual De-
sign Automation Conference, pp. 304–307, 2000.

[4] M. Valluri and L. K. John. Is compiling for perfor-
mance == compiling for power? In Interaction be-
tween Compilers and Computer Architectures, pp.
101–115. Springer, 2001.

[5] C.-H. Hsu and U. Kremer. The design, implemen-
tation, and evaluation of a compiler algorithm for
CPU energy reduction. In Proceedings of the 2003
Conference on Programming Language Design and
Implementation, pp. 38–48, 2003.

[6] J. Pallister, S. Hollis, and J. Bennett. Identifying
compiler options to minimise energy consumption
for embedded platforms. The Computer Journal,
pp. 1–15, 2013.

[7] J. Sorber, A. Kostadinov, M. Garber, M. Brennan,
M. D. Corner, and E. D. Berger. Eon: A lan-
guage and runtime system for perpetual systems.
In Proceedings of the 5th International Conference
on Embedded Networked Sensor Systems, pp. 161–
174, 2007.

[8] A. Sampson, W. Dietl, E. Fortuna, D. Gnanapra-
gasam, L. Ceze, and D. Grossman. EnerJ: Approx-
imate data types for safe and general low-power
computation. In Proceedings of the 32nd Confer-
ence on Programming Language Design and Im-
plementation, pp. 164–174, 2011.

[9] V. Tiwari, S. Malik, and A. Wolfe. Power analysis
of embedded software: A first step towards soft-
ware power minimization. IEEE Transactions on
Very Large Scale Integration, 2(4):437–445, 1994.

[10] R. Fonseca, P. Dutta, P. Levis, and I. Stoica.
Quanto: Tracking energy in networked embedded
systems. In Proceedings of the 8th Conference on
Operating Systems Design and Implementation, pp.
323–338, 2008.

[11] A. Roy, S. M. Rumble, R. Stutsman, P. Levis,
D. Mazières, and N. Zeldovich. Energy manage-
ment in mobile devices with the Cinder operating
system. In Proceedings of the 6th European Con-
ference on Computer Systems, pp. 139–152, 2011.

[12] J. Flinn and M. Satyanarayanan. PowerScope: A
tool for profiling the energy usage of mobile appli-
cations. In Proceedings of the 2nd Workshop on
Mobile Computing Systems and Applications, pp.
2–10, 1999.

[13] A. Kansal and F. Zhao. Fine-grained energy pro-
filing for power-aware application design. Perfor-
mance Evaluation Review, 36(2):26–31, 2008.

[14] T. Hönig, C. Eibel, R. Kapitza, and W. Schröder-
Preikschat. SEEP: Exploiting symbolic execution
for energy-aware programming. In Proceedings of
the 4th Workshop on Power-Aware Computing and
Systems, pp. 17–22, 2011.

[15] S. Wang, Y. Li, W. Shi, L. Fan, and A. Agrawal. Sa-
fari: Function-level power analysis using automatic
instrumentation. In Proceedings of the 3rd Interna-
tional Conference on Energy Aware Computing, pp.
1–6, 2012.

[16] ARM Incorporated. ARM Cortex-M0+ Technical
Reference Manual, Revision r0p1, 2012.

[17] T. Austin, E. Larson, and D. Ernst. SimpleScalar:
An infrastructure for computer system modeling.
IEEE Computer, 35(2):59–67, 2002.

[18] J. Hamano and L. Torvalds. Git Revision Control
System. http://www.git-scm.com.

[19] M. Mackall. Mercurial Revision Control System.
http://mercurial.selenic.com.

[20] H. Zhu, P. A. V. Hall, and J. H. R. May. Software
unit test coverage and adequacy. ACM Computing
Surveys, 29(4):366–427, 1997.

[21] K. Sen, D. Marinov, and G. Agha. CUTE: A con-
colic unit testing engine for C. In Proceedings of
the 10th European Software Engineering Confer-
ence, pp. 263–272, 2005.

[22] Freescale Semiconductor. KL02 Sub-Family Ref-
erence Manual, Revision 3.1, 2013.

[23] M. Rofouei, T. Stathopoulos, S. Ryffel, W. Kaiser,
and M. Sarrafzadeh. Energy-aware high perfor-
mance computing with graphic processing units. In
Proceedings of the 1st Workshop on Power-Aware
Computing and Systems, pp. 1–5, 2008.

http://www.git-scm.com
http://mercurial.selenic.com

[24] C. C. Evans. YAML Ain’t Markup Language.
http://www.yaml.org/.

[25] Texas Instruments Incorporated. MSP430FR57xx
Family User’s Guide, Revision c, 2013.

[26] STMicroelectronics Incorporated. STM32F405xx
and STM32F407xx Family Datasheet, Revision 4.
http://www.st.com/st-web-ui/static/

active/en/resource/technical/document/

datasheet/DM00037051.pdf.

[27] P3 International Corporation. Kill-A-Watt P4400.
http://www.p3international.com/.

[28] T. Hönig, R. Kapitza, and W. Schröder-Preikschat.
ProSEEP: A proactive approach to energy-aware
programming. In Proceedings of the 2012 USENIX
Annual Technical Conference (Poster), 2012.

[29] V. Konstantakos, A. Chatzigeorgiou, S. Nikolaidis,
and T. Laopoulos. Energy consumption estimation
in embedded systems. IEEE Transactions on Instr-
umentation & Measurement, 57(4),797–804, 2008.

[30] J. Gustafsson, A. Betts, A. Ermedahl, and B. Lisper.
The Mälardalen WCET benchmarks: Past, present
and future. In Proceedings of the 10th International
Workshop on Worst-Case Execution Time Analysis,
pp. 136–146, 2010.

[31] T. Heath, E. Pinheiro, J. Hom, U. Kremer, and
R. Bianchini. Application transformations for en-
ergy and performance-aware device management.
In Proceedings of the 11th International Confer-
ence on Parallel Architectures and Compilation
Techniques, pp. 121–130, 2002.

[32] S. Dawson-Haggerty, A. Krioukov, and D. E.
Culler. Power optimization: A reality check. Tech-
nical report, EECS Department, University of Cal-
ifornia, Berkeley, October 2009.

[33] A. Dunkels, B. Gronvall, and T. Voigt. Contiki: A
lightweight and flexible operating system for tiny
networked sensors. In Proceedings of the 29th
International Conference on Local Computer Net-
works, pp. 455–462, 2004.

[34] A. Krioukov, P. Mohan, S. Alspaugh, L. Keys,
D. Culler, and R. H. Katz. NapSAC: Design and
implementation of a power-proportional Web clus-
ter. In Proceedings of the 1st Workshop on Green
Networking, pp. 15–22, 2010.

[35] A. Jimborean, K. Koukos, V. Spiliopoulos,
D. Black-Schaffer, and S. Kaxiras. Fix the code.
Don’t tweak the hardware: A new compiler ap-
proach to voltage-frequency scaling. In Proceed-
ings of the 2014 International Symposium on Code
Generation and Optimization, pp. 262–272, 2014.

[36] C. Yoon, D. Kim, W. Jung, C. Kang, and H. Cha.
AppScope: Application energy metering frame-
work for Android smartphones using kernel activity
monitoring. In Proceedings of the 2012 USENIX
Annual Technical Conference, pp. 69–76, 2012.

[37] A. Weissel and F. Bellosa. Process cruise control:
Event-driven clock scaling for dynamic power
management. In Proceedings of the 2002 Confer-
ence on Compilers, Architecture, and Synthesis for
Embedded Systems, pp. 238–246, 2002.

http://www.yaml.org/
http://www.st.com/st-web-ui/static/active/en/resource/technical/document/datasheet/DM00037051.pdf
http://www.st.com/st-web-ui/static/active/en/resource/technical/document/datasheet/DM00037051.pdf
http://www.st.com/st-web-ui/static/active/en/resource/technical/document/datasheet/DM00037051.pdf
http://www.p3international.com/

	Introduction
	Design and System Architecture
	Snapshot-based Workflow
	Multi-Snapshot Analysis
	Input Data
	Scalability Aspects

	Energy Optimization Hints
	Power Management Features
	Libraries and Compilers
	Integration

	Implementation
	Software
	Core Implementation
	Back-End Implementation

	Hardware
	Measuring Energy Consumption
	Energy Measurement Device
	System Integration

	Evaluation
	Energy Measurements
	Energy Optimization Hints
	Energy Analysis Time Savings
	Hands-On Experiment

	Future Work
	Related Work
	Conclusion

