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Abstract
The Linux kernel can be a threat to the dependability of
systems because of its sheer size. A simple approach
to produce smaller kernels is to manually configure the
Linux kernel. However, the more than 11,000 configura-
tion options available in recent Linux versions render this
a demanding task. We report on designing and implement-
ing the first automated generation of a workload-tailored
kernel configuration and discuss the security gains such
an approach offers in terms of reduction of the Trusted
Computing Base (TCB) size. Our results show that the ap-
proach prevents the inclusion of 10% of functions known
to be vulnerable in the past.

1 Introduction

The Linux kernel is a commonly attacked target. In 2011,
148 Common Vulnerabilities and Exposures (CVE)1 en-
tries for Linux have been recoded, and this number is
expected to grow every year. This is a serious prob-
lem for system administrators who rely on a distribution-
maintained kernel for the daily operation of their systems.
On the Linux distributor side, kernel maintainers can
make only very few assumptions on the kernel configura-
tion for their users: Without a specific use case, the only
option is to enable every available configuration option
to maximize the functionality. The ever-growing kernel
code size, caused by the addition of new features, such as
drivers, file systems and so on, indicates that the risk of
undetected vulnerabilities will constantly increase in the
foreseeable future.

If the intended use of a system is known at kernel com-
pilation time, an effective approach to reduce the kernel’s
attack surface is to configure the kernel to not compile
unneeded functionality. However, finding a fitting con-
figuration requires extensive technical expertise about
currently more than 10,000 Linux configuration options,

1http://cve.mitre.org/

and needs to be repeated at each kernel update. There-
fore, maintaining such a custom-configured kernel entails
considerable maintenance and engineering costs.

This paper presents a tool-assisted approach to auto-
matically determine a kernel configuration that enables
only kernel functionalities that are actually necessary in a
given scenario. We quantify the security gains in terms of
reduction of the Trusted Computing Base (TCB) size. The
evaluation section (Section 3) focuses on an appliance-
like virtual machine that runs a web server similar to those
used to power large distributed web services in the cloud.
Our approach exhibits promising security improvements
for this use case: Compared with a default distribution
kernel, 10% of the kernel functions (i.e., 17 out of 179),
for which in total 31 vulnerabilities have been reported,
are removed from the tailored kernel.

The remainder of this paper is structured as follows:
Section 2 presents the design and implementation of the
first automated workload-specific kernel-build generation
tool. Section 3 evaluates of the usability of such an ap-
proach in a real-world scenario. Security benefits of the
tailored Linux kernel are discussed in Section 4. Sec-
tion 5 presents the related work. The paper concludes in
Section 6.

2 Kernel-Configuration Tailoring

The goal of our approach is to compile a Linux kernel
with a configuration that has only those features enabled
which are necessary for a given use case. This section
shows the fundamental steps of our approach to tailor
such a kernel. The six necessary steps are depicted in
Figure 1.

Ê Enable tracing. The first step is to prepare the ker-
nel so that it records which parts of the kernel code are
executed at run time. We use the Linux-provided ftrace

feature, which is enabled with the KCONFIG configuration
option CONFIG_FTRACE. Enabling this configuration op-
tion modifies the Linux build process to include profiling
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Figure 1: Workflow of the approach

code that can be evaluated at runtime.
In addition, our approach requires a kernel built with

debugging information so that any function addresses
in the code segment can be correlated to functions and
thus source file locations in the source code. For Linux,
this is configured with the KCONFIG configuration option
CONFIG_DEBUG_INFO.

Ë Run workload. In this step, the system administra-
tor runs the targeted application after enabling ftrace.
The ftrace feature now records all addresses in the text
segment that have been instrumented. For Linux, this
covers most code, except for a small amount of critical
code such as interrupt handling, context switches and the
tracing feature itself.

To avoid overloading the system with often accessed
kernel functions, ftrace’s own ignore list is dynamically
being filled with functions when they are used. This
prevents such functions from appearing more than once in
the output file of ftrace. We use a small wrapper script
for ftrace to set the correct configuration before starting
the trace, as well as to add functions to the ignore list
while tracing and to parse the output file, printing only
addresses that have not yet been encountered.

Ì Correlation to source lines. A system service trans-
lates the raw address offsets to source line locations using
the ADDR2LINE tool from the binutils tool suite. This
identifies the source files and the #ifdef blocks that are
actually being executed during the tracing phase. Techni-
cally, the tool stores its result to a text file with source-file
names and line numbers on each line.

Í Establishment of the propositional formula. This
step translates the source-file locations into a proposi-
tional formula. The propositional variables of this for-
mula are the variation points the Linux configuration tool
KCONFIG controls during the compilation process. This
means that every C Preprocessor (CPP) block, KCONFIG
item and source file can appear as propositional variable
in the resulting formula. This formula is constructed with
the variability constraints that have been extracted from
#ifdef blocks, KCONFIG feature descriptions and Linux
Makefiles. The extractors we use have been developed,
described and evaluated in previous work [5, 19, 20]. The
resulting formula holds for every KCONFIG configuration
that enables all source lines simultaneously.

Î Derivation of a tailored kernel configuration. A
SAT checker proves the satisfiability of this formula and
returns a concrete configuration that fulfills all these con-
straints as example. Note that finding an optimal solution
to this problem is an NP-hard problem and was not the
focus of our work. Instead, we rely on heuristics and con-
figurable search strategies in the SAT checker to obtain a
sufficiently small configuration.

As the resulting kernel configuration will contain some
additional unwanted code, such as the tracing functional-
ity itself, the formula allows the user to specify additional
constraints to force the selection (or deselection) of certain
KCONFIG features, which can be specified in whitelists
and blacklists. This results in additional constraints being
conjugated to the formula just before invoking the SAT
checker.

Ï Compiling the kernel. The resulting solution to the
propositional formula, obtained as described above, can
only cover KCONFIG features of code that has been traced.
As the KCONFIG feature descriptions declare non-trivial
dependency constraints [23], special care must be taken to
ensure that as many KCONFIG features as possible are not
selected while still fulfilling all dependency constraints.
We therefore use the KCONFIG tool itself to process this
feature selection to a KCONFIG configuration that is both
consistent and selects as few features as possible.

3 Practical Application

We evaluate the usefulness of our approach by setting up
a Linux, Apache, Mysql and PHP (LAMP)-based web
presence in a manner that is suited for deployment in a
cloud environment. The system serves static webpages,
the collaboration platform DOKUWIKI [6] and the mes-
sage board system PHPBB3 [17] as an example for typical
real-world applications. We use the distribution-provided
packages from the Debian distribution without further spe-
cific configuration changes or optimization. Evaluation
results are summarized in Table 1.
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3.1 Kernel Tailoring
To derive a minimized kernel configuration, the first
step consists of compiling a tracing-enabled Linux ker-
nel. We use the standard Linux kernel source and
configuration from the Debian distribution (version
2.6.32-41squeeze2) as a template for our tracing kernel
(Step Ê in Figure 1). On this kernel, we enable the fea-
tures CONFIG_FTRACE and CONFIG_DEBUG_INFO to include
the ftrace tracing infrastructure and compile with debug-
ging symbols. As our current prototype is not able to
resolve functions from loadable kernel modules (LKMs)
yet, we disable module support in the kernel configura-
tion, which causes all compiled code to be loaded into the
system at boot time.

Furthermore, a number of drivers cause compilation
and linking errors when not compiled as LKMs. Most
of these issues stem from drivers in the staging2 area.
Also, when trying to boot this kernel, we observe kernel
panics during the initialization of a range of watchdog
drivers. As these drivers turn out to be unnecessary for this
application scenario, we turn off the KCONFIG options
CONFIG_STAGING and CONFIG_WATCHDOG. These configura-
tion changes account for the difference in size and fea-
tures between the kernel shipped with Debian (∼42 MB
of code in the text segment) and the intermediary kernel
that is used for collecting traces (∼36 MB of code in the
text segment).

With this intermediary tracing kernel, the system is
tested against a test workload that covers all required
functionality. We use the Skipfish [22] security analysis
tool to systematically access all functionality of the appli-
ance in an automated manner. This corresponds to Step Ë
in Figure 1 and results in a total of 5,377 observed kernel
functions.

These traced kernel functions correlate to 4,686 differ-
ent source lines in 379 source files (Step Ì). We use a
modified version of the UNDERTAKER tool [20] to estab-
lish the propositional formula (Step Í) and to derive a
solution for it (Step Î). To avoid unwanted functionality
enabled in the resulting kernel, such as the ftrace infras-
tructure itself and LKM support, the UNDERTAKER tool
obeys a blacklist that consists of the KCONFIG options
CONFIG_FTRACE and CONFIG_MODULES. Also, we add eight
additional,3 use-case–agnostic KCONFIG items to the
whitelist in Step Î to enable features that are used by the
initialization startup scripts, which run before the system-
wide tracing process starts. These steps take 69 sec on a
commodity 2.8 GHz quad-core workstation with 4 GB of
RAM.

2The staging area contains unfinished and incomplete drivers that
are included as a technology preview.

3Specifically: CONFIG ACPI, CONFIG UNIX, CONFIG DEVTMPFS,
CONFIG DEVTMPFS MOUNT, CONFIG SERIAL 8250 CONSOLE and
CONFIG INOTIFY USER, CONFIG PM

Kernel Shipped by Debian
Loaded Code 5,465,602 Bytes
Total Loadable Code 42,188,538 Bytes
Loaded Kernel Modules 29
Kconfig options set to y 1,093
Kconfig options set to m 2,299
Functions with CVE entries 179

Intermediary kernel used for tracing
Loaded Code 36,341,888 Bytes
Total Loadable Code 36,341,888 Bytes
Loaded Kernel Modules 0
Kconfig options set to y 3,298
Kconfig options set to m 0
Functions with CVE entries 207

Resulting application-tailored kernel
Loaded Code 3,990,153 Bytes
Total Loadable Code 3,990,153 Bytes
Loaded Kernel Modules 0
Kconfig options set to y 379
Kconfig options set to m 0
Functions with CVE entries 162

Table 1: Results of the experiment at a glance. The code
sizes were obtained with the SIZE tool from the BINU-
TILS suite by adding the sizes of the text segments of the
bootable kernel image and all loadable .ko files.

3.2 Evaluation

To ensure the functionality of the appliance, we run the
Skipfish [22] security scan again on the system with the
tailored kernel, and compare the results with the previous
run on the tracing kernel. The comparison of these two
reports indicates no differences in the number of vulnera-
bilities or other issues.

The performance is tested with the httperf tool [16].
The tool accesses a static website continuously, at a con-
stant number of requests per second in each run. We did
two setups of the same test scenario, both times using
the same system, but once booted with the Debian stan-
dard kernel, and once with our tailored kernel. The data
shows that our tailored kernel achieves a performance
very similar to that of the original kernel provided by the
distribution.
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Figure 2: Comparison of reply rates of the web server with
the tailored kernel and the standard distribution kernel.
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4 Discussion

After the presentation of a practical use case for our ap-
proach, this section now evaluates the security benefits.
For this, we present an applicable security model to de-
termine the TCB, and discuss security improvements in
terms of TCB reduction.

Security Model. In the context of the web service pre-
sented, we assume both local and remote malicious attack-
ers that target the kernel. However, we do not consider
attackers that have physical access to the machine nor
attacks that directly target hardware and firmware vulner-
abilities.

The security goal is to prevent an attacker from gaining
full control with arbitrary code execution in kernel mode,
information leakage (e.g., recover uninitialized kernel
memory content) to breach confidentiality, and denial-
of-service attacks by crashing the kernel to reduce the
availability of the system.

TCB sizes. Following the literature [11], we define the
TCB as “the subset of components that need to be trusted
to fulfill the security goals given in the security model”.
Therefore, in the security model above, the TCB is solely
composed of the kernel, including all LKM loaded during
normal operation.

We apply three different metrics to measure the TCB
reduction: a) the compiled code (text segment) size of the
kernel, b) the total number of features that are enabled in
KCONFIG and c) the number of functions compiled into
the kernel for which there has been an CVE entry in the
past 10 years. More precisely, through a semi-automated
process, we map a subset of 197 out of 873 CVE entries
to vulnerabilities in 215 unique functions in the kernel,
and use this dataset. The results for all three kernels used
in the experiment in Section 3 are shown in Table 1.

Results. The data shows that the Linux kernel shipped
by Debian loads 5.5 MB of program code into the mem-
ory for the virtual machine in the scenario described in
Section 3. Compared with the code size of 4 MB for our
tailored kernel, the total TCB size is reduced by 27%.

The number of features enabled is also reduced signif-
icantly, from 3,392 (with 1,093 features compiled stat-
ically into the kernel and 2,299 as LKM) to 379. The
omission of functionality to load further LKMs consti-
tutes an additional security benefit.

Finally, for each function in the TCB, we record the
number of known vulnerabilities that have been reported
in the past 10 years. When comparing the default distribu-
tion kernel to the tailored kernel, we observe a reduction
of 10% of functions for which vulnerabilities have been

reported in the past. However, this number is a lower-
bound estimate, as the Linux kernel supports on-demand
insertion of LKM, resulting in a higher initial TCB size,
and therefore higher TCB reduction.

Sampling bias. Compared with the code size reduction
results above, the CVE reduction numbers may seem
lower than expected. We hypothesize that this impression
can be attributed to sampling bias: code that is used more
often is also audited more often, and better care is taken
in documenting the vulnerabilities of such functions. A
comparison of the average number of CVEs in kernel
functions that are loaded and used (9.8‰) with the aver-
age number of CVEs in kernel functions that are not used
(3.7‰) supports this hypothesis. Previous studies [3]
have also shown that code in the driver/ sub-directory
of the kernel, which is known to contain a significant
number of rarely-used code, on average contains signifi-
cantly more bugs than any other parts of the kernel tree.
Consequently, it is likely that unused features provided by
the kernel still contain a significant amount of relatively
easy-to-find vulnerabilities. This further confirms the im-
portance of reducing the TCB size as presented in this
work.

Unexpected impacts. The tailoring approach presented
in this work as a security solution could in turn cause a
reduction of the security of the system – a drawback that
is common to many security software but is often over-
looked. Reviewing the process described in Section 2
(Step Ï), we cannot rule out that for some application
scenarios, performance-critical or security features might
be removed from the base kernel. Possible reasons for this
include that a) the feature was not triggered during the
system-wide trace, b) the functionality has been excluded
from the instrumentation with ftrace (e.g., for perfor-
mance reasons), or c) the configuration options influence
the resulting kernel in non-functional ways (e.g., different
compilation flags, etc.). Although we were not able to find
any results confirming this in this experiment — for exam-
ple, we have verified that the CONFIG_CC_STACKPROTECTOR
configuration option, which toggles the inclusion of the
GCC flag for adding a stack frame canary, remains enabled,
in future work we intend to further evaluate potential ad-
verse impacts.

Applicability. The approach presented relies on the as-
sumption that the use-case of the system is clearly defined.
Thanks to this a priori knowledge, it is possible to deter-
mine what kernel functionalities the application requires
and therefore, what kernel configuration options have to
be enabled. With the increasing importance of compute
clouds, where customers employ virtual machines for
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very dedicated services such as the web server presented
in Section 3, we expect that our approach can be easily
applied to further use cases that are commonly deployed
in the cloud.

Usability. Most of the steps presented in Section 2 re-
quire no domain specific knowledge of Linux internals.
We therefore expect that they can be conducted in a
straightforward manner by system administrators without
specific experience in Linux kernel development. The
system administrator, however, continues to use a code
base that continuously receives maintenance in form of
bug fixes and security updates from the Linux distributor.
We therefore are confident that our approach to automati-
cally tailor a kernel configuration for specific use-cases
is both practical and feasible to implement in real-world
scenarios.

Extensibility. The experiment in Section 3 shows that
the resulting kernel requires eight additional KCONFIG
options for proper operation. Alternatively to adding
these features to the whitelist with distribution-specific
knowledge, starting the application tracer at the start of the
boot process would also capture the missing functionality.
However, in this way we demonstrate the ability to specify
wanted or unwanted KCONFIG options independently of
the tracing. This allows our approach to be assisted in
the future by methods to determine kernel features that
tracers such as ftrace cannot observe at all.

5 Related work

As we show below, this work relates to two research areas.

Kernel specialization. Several researchers have sug-
gested approaches to tailor the Linux kernel, although
security is usually not a goal, but improvements in code
size or execution speed are: Lee et al. [12] manually
modify the source code (e.g., by removing unnecessary
system calls) based on a static analysis of the applications
and the kernel. Chanet et al. [2], in contrast, propose
a method based on link-time binary rewriting, but also
employ static analysis techniques to infer and specialize
the set of system calls to be used. Both approaches, how-
ever, do not leverage any of the built-in configurability of
Linux to reduce unneeded code. Moreover, our approach
is completely automated.

TCB reduction has always been a major design goal for
micro-kernels [1, 13], which in turn facilitates a formal
verification of the kernel [9] or its implementation in type-
lafe languages, such as OCaml [14].

Kernel attack surface reduction. The security model
used in this paper is commonly used when building sand-
boxing or isolation solutions, in which each process must
be contained within a particular security domain, such
as [4, 8, 15], which are all based on the Linux Security
Module (LSM) framework [21]. The idea of directly re-
stricting the system call interface on a per-process basis
was first presented by Provos [18] for OpenBSD, although
not with specific focus on reducing the kernel’s attack sur-
face. Seccomp [7] directly tackles this issue by allowing
processes to be sandboxed at the system call interface.
Ktrim [10] is a current research project which goes be-
yond simply limiting the system call interface, and ex-
plores the possibility of finer-granularity kernel attack
surface reduction by restricting individual functions (or
sets of functions) inside the kernel. In contrast, this work
focuses on compile-time removal of functionality from
the kernel at a system-wide level instead of a runtime
removal at a per-application level.

6 Conclusion and Future Work

This paper presents an approach for automatically tailor-
ing a Linux kernel configuration to a given use case. The
result is a Linux kernel in which unnecessary functionality
is removed at compile-time, hence significantly reducing
TCB size. The reduction can be quantified with 27%
less code loaded and at least 10% fewer kernel functions
which were previously vulnerable to attacks.

While the current prototype shows promising results,
we intend to improve on the usability and applicability to
additional use-cases. For instance, the current prototype
unconditionally disables module loading support. As this
may be undesirable in some cases, we intend to improve
the handling of LKMs, as well as to remove the the need
for an intermediary tracing kernel.
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2010, pages 51–56.

6

http://dx.doi.org/10.1145/1065910.1065925
http://dx.doi.org/10.1145/1065910.1065925
http://dx.doi.org/10.1145/502034.502042
http://lwn.net/Articles/393012/
http://lwn.net/Articles/393012/
http://dokuwiki.org
http://dokuwiki.org
http://code.google.com/p/seccompsandbox/wiki/overview
http://code.google.com/p/seccompsandbox/wiki/overview
http://code.google.com/p/seccompsandbox/wiki/overview
http://dx.doi.org/10.1145/1629575.1629596
http://dx.doi.org/10.1145/1972551.1972557
http://dx.doi.org/10.1145/138873.138874
http://dx.doi.org/10.1145/224057.224075
http://dx.doi.org/10.1145/224057.224075
http://dx.doi.org/10.1145/306225.306235
www.phpbb.com
http://dx.doi.org/10.1145/1868294.1868300
http://dx.doi.org/10.1145/1868294.1868300
http://dx.doi.org/10.1145/1966445.1966451
http://code.google.com/p/skipfish/
http://code.google.com/p/skipfish/

	Introduction
	Kernel-Configuration Tailoring
	Practical Application
	Kernel Tailoring
	Evaluation

	Discussion
	Related work
	Conclusion and Future Work

