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Abstract
Upcoming multi-core processors force developers of real-
time systems to meet the challenges in real-time synchro-
nization. This paper sketches some results of a novel
wait-free, linearizable, and disjoint-access parallel NCAS
library, called RTNCAS. It focuses the use in massive
parallel real-time systems and enables developers to im-
plement arbitrarily complex data structures in an easy
way, while ensuring linearizability, wait-freedom, as well
as disjoint-access parallelism. It allows, furthermore, de-
velopers to re-use their sequential algorithms without any
modifications and care about concurrency. Thereby, the
degree of disjoint-access parallelism can be used to trade
a low jitter for a higher average-case performance.

1 Introduction
Future CPU generations will offer an increasing amount
of parallelism. This fact induces, however, a plenty of
challenges, in particular for real-time systems. For the pre-
vious decades, increasing clock cycles of uni-processors
let real-time systems, such as data and computationally
intensive control systems, scale well in terms of perfor-
mance without violating the time specifications and with-
out further man-power [19]. Thus, scalable performance
is not an issue in the field of uni-processor real-time sys-
tems. In environments that occupy an increasing amount
of parallelism and where clock frequencies of processing
elements tend to stagnate, scalable performance, how-
ever, becomes a prerequisite. Scalable performance, how-
ever, requires the elimination of sequential code, such
as critical sections protected by spinlocks, or auxiliary
schemes for wait-free computing [6, 13, 5] that usually
perform concurrent operations in a strict sequential or-
der. The way of processor manufacturers to continually
increase parallelism needs, on the software side, generic
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mechanisms that allows us to continually concentrate on
building complex real-time systems, without digress into
building complex [4] special purpose constructs to tackle
concurrency. The latter is a rather error-prone process
and, hence, induces risks of incorrect real-time systems.
These challenges are to be mastered.

In this paper, we sketch some results of our RTNCAS
library, introduced previously in a two-paged abstract [16].
RTNCAS tackles all these challenges by offering a lin-
earizable [7], wait-free [6], and disjoint-access parallel [8]
NCAS approach that is able to conditionally swap up to
256 words in an atomic manner.

2 System Model
RTNCAS was developed for asynchronous shared mem-
ory systems with multiple closely connected processing
elements. To show under which conditions RTNCAS
works correctly, we shall specify the system model.

First, the number of threads is limited and known in
advance. Most real-time applications (especially those
with hard timing constraints) fulfill this precondition.

Second, the target machine has to support some atomic
instructions. Most multi-core CPUs offer such instruc-
tions, i.e. FAA, CAS, and DCAS. Fetch-and-Add (FAA)
atomically fetches a memory location and increments it
by a given value. By this instruction we can implement
atomic increment and decrement operations on word sized
counters. Compare-and-swap (CAS) atomically compares
a one word sized memory location with a given ”old value”
and conditionally swaps it to a ”new value”, if the com-
pare part succeeds. And double-word compare-and-swap
(DCAS), which is has the same semantics as CAS, but
operates on two consecutive memory words.

Last, the target machine has to guarantee a worst-case
execution time (WCET) for these instructions. They may
also be implemented in software (e.g., via the load-linked
and store-conditional instructions [11]), if the implemen-
tation is linearizable and wait-free.
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Figure 1: Uses hierarchy [12] of RTNCAS. The right big block depicts
the progress properties ensured by the transformation steps on top of
a sequential DS operation. Thereby, lower boxes represent stronger
properties. The left big block depicts the techniques used within the
transformations to achieve these progress properties.

3 RTNCAS

3.1 Terminology
An NCAS method is used to atomically change several
unrelated variables, if and only if they contain the given
expected value. An NCAS operation corresponds to an
invocation of an NCAS method; the NCAS method im-
plements the NCAS operation.

A data structure operation is a user-defined function on
a shared data structure (DS), such as enqueue on a FIFO
queue. The actual semantics of a DS operation performed
by the RTNCAS library is implemented in a user-defined
callback function λ activated through an upcall [2] by the
RTNCAS library.

3.2 Properties
The user-defined DS operations implemented via RT-
NCAS have to be correct and provide strong progress
guarantees that allow the definition of upper bounds for
their WCET. These properties make such operations ap-
plicable in hard real-time applications.

RTNCAS guarantees that such operations are always
linearizable. Linearizability [7] defines a correctness con-
dition of concurrent objects. The main benefit of lineariz-
able implementations is the feasibility of local correctness
proofs to verify all concurrent execution histories. Imple-
mentations of DS operations using RTNCAS also support
strong progress properties. To achieve those properties,
we use the techniques depicted in Fig. 1.
1. Lock-free operations are interrupt-transparent, and nei-
ther depend on system libraries nor induce restrictions
to the scheduler (we do not consider backoff algorithms,

such as [14], here). Under concurrent usage they also
frequently yield better performance than blocking coun-
terparts [20]. As no progress guarantees can be given for
such operations, it prevented us to determine the WCET
of such operations.
2. Wait-free operations [6] are lock-free and have a deter-
minable WCET. Hereby, the temporal requirements of
real-time applications can be satisfied.
3. Disjoint-access-parallel operations [8] offer parallel
executions of operations that access to disjoint memory.
This yields additional benefits in performance in multi-
and many-core environments.

Starting with a sequential implementation of a DS oper-
ation, we apply several transformations to it. Each of these
transformation ensures the next stronger progress prop-
erty and finally, a wait-free and disjoint-access-parallel
DS operation is reached.

3.3 Design
Sequential operations on data structures rely on exclusive
access to the parts of the structure by one unit of execution.
Their methods are typically implemented using reads and
writes to single words spread out over the whole critical
region to manipulate the state of a DS. Fig. 2 depicts
an example where three words – comprising the current
state of a linked-list – are manipulated when adding an
new element. Such operations correspond to sequential
operations in Fig. 1.

3.3.1 Lock-Free Operations

In a first step the formerly sequential operation has to
be transformed into a lock-free operation. This is ac-
complished by reading the old state of the DS via a read
method (see Fig. 1), computing a new state, and, finally,
atomically exchanging the old state with the new one by
an NCAS operation. In case of concurrent interference
the NCAS operation may fail and the complete operation
including reading the old state and computing the new
state has to be repeated.

The usage of the NCAS operation as described above is
both lock-free and linearizable. As depicted in Fig. 1, we
require a weakly wait-free NCAS method (requirement
L1) to support lock-free DS operations and a read method
(req. L2) to retrieve the actual value from an NCAS word,
which are described later in Sec. 4.

3.3.2 Wait-Free Operations

The usage of the NCAS operation within such a retry-loop
prevents the estimation of a WCET for the DS operation
in the presence of concurrent executions. This is due to
the number of retries needed to successfully complete the
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Figure 2: This figure shows all data structures involved in RTNCAS
and illustrates an example of adding a node n3 to a FIFO queue by
using RTNCAS. An enqueue operation implemented via locks would
modify tail, tail->next, len inside a critical region to ensure
atomicity. To add n3 to the queue using RTNCAS, all words of the DS
are encapsulated into NCAS words. The thread performing the enqueue
operation has to create an opqueue structure containing a unique ticket
to be able to deduce a chronological order and a user-defined callback λ
to create an NCAS structure describing the atomic state transformation
to enqueue n3. This opqueue structure is enqueued to the operation
queue providing a wait-free helping scheme, where concurrent threads
help each other to perform stalled operations.

DS operation is unpredictable a priori. This is unaccept-
able under hard real-time conditions. To overcome this,
we transform the lock-free operation into a wait-free one
by means of a helping scheme implemented via an oper-
ation queue as depicted in Fig. 2. This operation queue
guarantees progress of DS operations built on top of it.

The operation queue is implemented by a wait-free
FIFO and works as depicted in Fig. 2: Every thread en-
capsulates its DS operation into a so called opqueue struc-
ture. This structure contains a pointer to the callback λ, a
pointer to the NCAS structure generated by the callback
λ, and a unique ticket to establish a chronological order
among all elements within the operation queue.

After enqueuing the own operation, each thread per-
forms the following steps until its own operation is com-
pleted: Get the oldest opqueue structure from the opera-
tion queue and try to perform the encapsulated operation.
The latter is done in the following three steps: 1) The
opqueue structure is checked for an active NCAS struc-
ture, i.e. an NCAS structure whose associated NCAS
operation might still be executed successfully. If one is
found, the second step is skipped. 2) The callback λ is
used to create a new NCAS structure (see Fig. 2). A thread
then tries to replace the reference to the NCAS structure
in the opqueue structure with a reference to the newly
created one. To ensure that only non-active NCAS struc-

tures are replaced, CAS is used here. 3) The reference
to the current NCAS structure is reloaded and its NCAS
operation is executed. Thus, in case of multiple threads
concurrently working on the same opqueue structure, ex-
actly the same NCAS structure is used to perform the
actual NCAS operation in a cooperative manner. Finally,
in case of successful execution of the NCAS operation,
the opqueue structure is dequeued.

The operation queue imposes additional requirements.
First, we need a wait-free FIFO that allows us to find
and use the oldest entry without removing it. Therefore,
we have adapted one of our earlier work [15]. Second,
the NCAS implementation has to support cooperation: If
all active threads work on the same NCAS operation (by
using the same NCAS structure), the described NCAS
operation must be completed successfully (req. W1),
discussed in Sec. 4.5. This helping scheme facilitates the
implementation of wait-free DS operations. Thereby, a
progress guarantee and an upper bound for the WCET
can be given for these DS operations.

3.3.3 Disjoint-Access-Parallel Operations

The helping scheme implemented by the operation queue
has one drawback: All DS operations are performed se-
quentially. This is not disjoint-access-parallel [8], leads
to convoy effects [3] (sequential code), and cause poor
average performance. To avoid these side effects, we in-
troduce the concept of speculative execution (see Fig. 1).

Before enqueueing an opqueue structure into the oper-
ation queue each thread tries to execute the DS operation
speculatively by the corresponding lock-free operation
(see Sec. 3.3.1). If the speculative execution fails, an
opqueue structure will be enqueued into the operation
queue and the thread carries on as described in the pre-
vious section. If the speculative execution is successful,
the thread still works on the oldest entry of the operation
queue. This is required to guarantee progress for the old-
est entry in the operation queue. Otherwise, the oldest
entry might starve due to continuously interfering specu-
lative executions. By forcing every thread to execute at
least one opqueue structure from the operation queue, it
can be guaranteed that the oldest entry in the operation
queue is completed in finite time.

The speculative execution creates one new require-
ment for the NCAS implementation: It has to be able
to deal with different priorities of NCAS operations (req.
D1). An NCAS operation using an opqueue structure
stalled within the operation queue has a higher priority
than NCAS operations executed speculatively.

Using speculative execution, finally, we support the
implementation of wait-free and disjoint-access-parallel
DS operations (see Fig. 1). The degree of disjoint-parallel
accesses can, furthermore, be chosen with respect to the
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number of speculative executions that can take place con-
currently. Hereby, a low jitter can be traded for a better
average performance.

4 NCAS

4.1 NCAS Structure
Every NCAS operation is wrapped into a structure, an
NCAS structure, that, as depicted in Fig. 2, contains the
addresses of the variables that are to be changed, their
expected old values, their respective new values, and a
status variable. The status variable can adopt the states
WORKING, SUCCESS, WRONG VALUES, and KILLED.
Initially it is WORKING and during the lifetime of the
structure, it can only be changed from WORKING to a
different state. SUCCESS indicates a successful execution
of the NCAS operation, WRONG VALUES means that the
values of the variables to be changed differ from the ex-
pected old values, and KILLED denotes that this NCAS
operation has been cancelled by another NCAS opera-
tion. For concurrent usage of NCAS structures, we use
Sundell’s reference counting idiom [17].

4.2 NCAS Words and Value Function
Every variable that is supposed to be changed by an
NCAS operation is wrapped into another structure, called
an NCAS word (see Fig. 2). It either directly contains the
value of one machine word or it contains a reference to
another NCAS structure. In our implementation, NCAS
words consist of two machine words; there is a status bit
that differentiates between ”contains value directly” and
”contains reference”. In either case the remaining bits of
the two machine words are interpreted accordingly. To
guarantee consistent updates of NCAS words, changes on
them are always made by means of DCAS.

On an NCAS word an abstract value function is defined:
If the NCAS word contains a value directly, the result of
the function is this value. If the NCAS word contains a
reference, the result of the value function depends on the
values and the status of the referenced NCAS structure. If
the status is not equal to SUCCESS, the value of the NCAS
word is the value of the corresponding ”old value” field in
the referenced NCAS structure. If the status is SUCCESS,
the value of the NCAS word is the ”new value”.

4.3 Read Method
We have implemented a read method reflecting req. L2 in
Sec. 3.3.1 that implements the value function, described
in the previous section. If this method is performed suc-
cessfully, it returns a value that has been the value of the
NCAS word for some moment during the invocation of

the method. The read method is weakly wait-free, i.e. it
may fail to reliably read a value if the referred NCAS
structure has been deallocated in the meantime. In this
case the read method returns an error code.

4.4 NCAS Method
Our NCAS method implements req. L1, mentioned in
Sec. 3.3.1. It consists of three phases, similar to Rama-
murthy’s approach [13]. The semantics of these phases
are as follows:
Phase 1: A reference to the current NCAS structure NCS
is inserted in every NCAS word that needs to be changed.
Note that inserting these references does not affect the
values of the NCAS words.
Phase 2: The NCAS method tries to change the status of
the NCAS structure NCS from WORKING to SUCCESS
by a single CAS instruction. The CAS might fail, if the
status of NCS has been set either to WRONG VALUES or
KILLED before.
Phase 3: The references to the current NCAS structure
NCS are replaced by the actual values. If the CAS in-
struction in phase 2 was successful, all references are
replaced by the new values. Otherwise, the old values are
restored. This works, since the replacing of the references
in phase 1 does not affect the values of the NCAS words.

All manipulations of the NCAS words are made in a
concurrent-safe way by means of DCAS. For instance,
in the first phase it is ensured that a reference is only
inserted if the NCAS word contains the expected value.
Furthermore, a reference is only replaced by the actual
value, if a NCAS word still contains a reference to the
NCAS structure in the last phase.

The NCAS method could fail in two cases. Both of
them are detected in the first phase and are taken into
account no later than in the second phase. Moreover,
both cases only arise in presence of speculative execution,
otherwise all NCAS operations are executed sequentially
with the help of the operation queue (see Sec. 3.3.2).

Speculative execution might lead to the situation that
two threads concurrently work on different NCAS struc-
tures NCS A and NCS B containing references to shared
NCAS words. Assume that a reference to NCS A has al-
ready been inserted into an NCAS word and one of the
threads tries to insert a reference to NCS B into the same
NCAS word. While it is straightforward to replace the
reference to NCS A with a reference to NCS B, it must
be ensured that only one NCAS operation succeeds if
both are in state WORKING. Otherwise, the data structure
would be updated inconsistently in the third phase; this
is prevented by setting the status of NCS A to KILLED by
means of a CAS instruction before replacing the reference.
This ensures that the values of the NCAS words are not
changed by the NCAS operation referred to by NCS A.
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In the description above we assume that the NCAS
operation referred to by the NCAS structure NCS B wins,
i.e. the NCAS operation on NCS B can be successfully
completed while that on NCS A is cancelled. The actual
winner, however, will be determined by means of priori-
ties that are explained later on in Sec. 4.6.

Additionally, the DS could have been updated during
the current NCAS operation. This can happen, if NCS A

has already proceeded to the state SUCCESS in the exam-
ple above. Here, a thread in phase 1 would detect that
an NCAS word does no longer have the expected value.
In this case, inserting a reference to the NCAS struc-
ture into the NCAS word is not possible without chang-
ing values (after setting the reference, the NCAS word
would contain the expected old value!). As a consequence,
the whole NCAS operation cannot be executed anymore.
The status of the NCAS structure is then changed to
WRONG VALUES by means of a CAS instruction. The
value of the NCAS word is determined using the read
method described in the foregoing section. If the read
method fails, the status of the NCAS structure also is up-
dated to WRONG VALUES and the NCAS operation fails.
Again, this ensures that the values of the NCAS words are
not erroneously changed by the current NCAS operation.

4.5 Cooperative NCAS

A problem occurs when more than one thread simultane-
ously work on the same NCAS structure. If one thread is
still in phase 1 despite the object’s status already being
SUCCESS, setting a reference may change the value of
the NCAS word. Thus, we introduce pre-references that
are similar to a reference, in that an NCAS word that
contains a pre-reference has its value determined by the
(pre-)referenced NCAS operation object. The difference
is that the value is independent of the status of the object;
it is always the old value. Thus, setting a pre-reference
does not change the value of the NCAS word. By using a
unique representation for the pre-reference, it is ensured
that a thread does not mistake a pre-reference set by an-
other thread for a pre-reference of its own; thus, ABA
problems [10] are prevented. A pre-reference is distin-
guished from a reference by means of an additional bit
next to the status bit in an NCAS word.

Phase 2 of the NCAS method requires that a reference
is inserted into every NCAS word, otherwise the values
of these NCAS words cannot be changed atomically. For
this purpose, every pre-reference has to be replaced by a
reference before phase 2 can be completed. The proper
use of DCAS ensures that a thread cannot replace its pre-
reference by the actual reference if another thread suc-
cessfully completed the NCAS operation in the meantime.
Hence, setting a reference is impossible, after the status of
the NCAS operation has already been changed. Thereby,

we can guarantee that the values of the NCAS words are
not altered in phase 1, although several threads can co-
operatively work on the same NCAS structure, hereby
reflecting req. W1 in Sec. 3.3.2.

4.6 Priorities of NCAS Requests

According to req. D1 in Sec. 3.3.3, different priorities
among NCAS operations have to be supported. Thereby,
higher priority NCAS operations shall not be disturbed
by lower priority ones. This is ensured by a priority com-
parison in phase 1 of the NCAS method, if a reference to
another NCAS structure is encountered when inserting
references and its state is WORKING. If this NCAS oper-
ation has a higher priority, the own NCAS operation is
cancelled by setting its status to KILLED; else the other
NCAS operation is cancelled instead.

5 Further Related Work

For brevity, we only present the most important related
work. In [6], Herlihy introduced the first wait-free uni-
versal construction (UC) that consumes an unbounded
amount of memory, serializes all operations on object O,
which induces convoy effects [3], and makes copies of
potentially large objects. It, furthermore, requires at least
N local computation steps to complete a operation [9].

Anderson and Moir introduced in [1] various nonblock-
ing UC to reduce the copying overhead when dealing
with large objects on the basis of load-linked and store-
conditional [1]. Their constructions do not allow paral-
lelism on disjoint memory locations; this is due to the fact
that there are no information about the memory locations
available that are to be changed.

In [18], Sundell presented a wait-free NCAS operation
with a helping scheme. The scope of his work, however,
are transactions of sets of values instead of building DS
operations. Building custom DS operations is also sup-
ported, but only lock-freedom can be guaranteed.

6 Conclusion and Further Work

Developers of shared data structures now have an easy
way to achieve full interrupt-transparency with a strong
progress guarantee and minimize sequential code. With
RTNCAS, developers can, furthermore, use their sequen-
tial algorithms on top of it without modifications. We are
currently still working on several optimizations to reduce
the WCET of RTNCAS-based DS operations. Addition-
ally, we also evaluate RTNCAS with other approaches,
which currently show some promising results.
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