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SUMMARY

In this paper we present a prototype of the RTSC – the Real-Time Systems Compiler. The RTSC is a
compiler-based tool that enables the migration from event-triggered to time-triggered real-time systems.
This is achieved by replacing the real-time systems architecture of a given real-time system. The real-time
systems architecture governs the structural properties of the white-box view of a real-time system: how are
tasks attached to events and how are dependencies between different tasks implemented. The RTSC uses
an abstraction called Atomic Basic Blocks (ABBs) to hide the real-time systems architecture and capture
all relevant dependencies of an event-triggered system in a global ABB-graph. The RTSC automatically
extracts that ABB-graph from an event-triggered real-time system given as source code, transforms that
ABB-graph appropriately, and maps it to a statically computed schedule that could be executed by standard
time-triggered real-time operating systems. Important temporal properties of the physical environment of the
real-time system needed for that transformation are stored in a system model provided as additional input to
the RTSC. Furthermore, we demonstrate the applicability of our approach and the operation of our prototype
by transforming the event-triggered control application into a time-triggered equivalent. Copyright c© 0000
John Wiley & Sons, Ltd.
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1. INTRODUCTION

At the beginning of any real-time systems project one has the choice either to go for an event-
triggered or a time-triggered solution. Event-triggered systems have the advantage of being much
more flexible and, thus, are much more handy when dealing with changing requirements or uncertain
knowledge (aperiodic events for instance as their period is not known). According to Carlow [1]
these were the reasons to select an event-triggered approach when building the space shuttle primary
avionics system. On the other hand, time-triggered systems can be verified much easier. This is a
significant advantage for any kind of dependable system. Therefore, Gagne and Sheppard made a
great effort to port the F18 mission computer software to a time-triggered execution environment [2].
A significant part of this porting process had to be done manually. Thus, this was a work-intensive
and also a possibly error-prone undertaking. Often the transition from an event-triggered system
to a time-triggered system or vice versa is even deemed too cumbersome to be a viable option. In
such cases, the redesign of the system tied with the re-implementation of large parts of the system
becomes inevitable.

In fact, there are more motivating examples that make a migration between event-triggered and
time-triggered systems desirable. One of them is the shift from CAN-based [3] communication to
FlexRay-based [4] communication systems in the automotive domain. Here, a purely event-triggered
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communication system is replaced by a mostly time-triggered one. Although, FlexRay also offers
event-triggered communication semantics its real strength is the time-triggered communication mode.
So, in order to benefit from FlexRay the affected control units should adopt that time-triggered mode
of operation.

This especially holds for so called X-by-wire applications like Steer-by-wire [5]. Such systems
are absolutely safety-critical and are not backed up by mechanical systems. As a consequence,
their dependable operation presumably requires some kind of redundancy. A widespread measure
for that is triple module redundancy (TMR) and it is well known that TMR could much easier be
implemented in time-triggered systems than in event-triggered systems [6]. Therefore, adapting the
affected control units to a time-triggered execution environment would be very beneficial.

However, the migration between event-triggered and time-triggered systems is very labour intensive
and cumbersome. This is mainly owed to the cross-cutting nature of these real-time paradigms. They
differ in the way handler functions are activated in response to events and in the mechanisms offered
to coordinate multiple simultaneously executed handlers. Event-triggered systems usually offer a
variety of mechanisms to implement blocking and non-blocking uni- and multilateral synchronisation.
Time-triggered systems, on the other side, impose run-to-completion semantics upon these handlers
and order them appropriately in a statically computed schedule table. Thereby, all the places where a
particular handler function is activated and all the points where simultaneous handlers interact are
tied with the underlying mechanisms offered by employed real-time paradigm. In our work we aim
at finding these places in the implementation of event-triggered systems and replace them by the
mechanisms available in a time-triggered real-time systems architecture in an automated, tool-based
manner, thus, automating that migration process.

1.1. Overview

The approach we pursue to automatically migrate event-triggered to time-triggered systems applies
a tool-based source code transformation on the implementation of the given real-time system.
We require that this system is “correct” and respects the temporal requirements of its physical
surroundings. We assume that for a successful transformation it is sufficient to preserve the following
properties:

Internal dependencies among simultaneous event-handlers present in the event-triggered system
must also be maintained in the generated time-triggered system.

Temporal requirements imposed by the physical environment must also be met by the generated
time-triggered system.

Internal dependencies are covered by a global dependency graph spanned by Atomic Basic Blocks
(ABBs) [7, 8] that describes the white-box view of the real-time system. While the control flow
structure of a single event-handler could already be described by an inter-procedural control flow
graph (CFG), it is not possible to express dependencies among different event-handlers that way.
Thus, the intended purpose of the ABB-based dependency graph is twofold. Firstly, it extends such
CFGs to global dependency graphs by incorporating dependencies crossing the borders of event-
handlers. Secondly, ABBs partition these CFGs into smaller portions that are inherently independent
of the underlying real-time systems architecture. Thereby, ABBs abstract from the real-time paradigm
facilitating an automated transition from event-triggered to time-triggered systems.

A system model is used to store the temporal requirements of the physical environment, thereby,
specifying the black-box view of the real-time system. These requirements are then connected to the
global dependency graph made up by ABBs. Hereby, these requirements can be taken into account
when mapping that dependency graph to a time-triggered execution environment.

In this paper, which is an extended version of our previous paper [9], we introduce the term real-
time systems architecture to subsume the different mechanisms available to implement dependencies
between different event-handlers and the means to attach them to external events. A real-time systems
architecture comprises exactly those properties that have to be hidden by ABBs and the system
model to represent the system’s white-box view independently of the original real-time paradigm.

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe



THE RTSC: MIGRATING EVENT-TRIGGERED SYSTEMS TO TIME-TRIGGERED SYSTEMS 3

Furthermore, we present a prototypical implementation of the Real-Time Systems Compiler (RTSC)
that uses ABB-based dependency graphs to migrate event-triggered to time-triggered systems. The
RTSC extracts these graphs from an event-triggered system and finally maps them to statically
computed schedule table that is executed by a time-triggered execution environment.

In general, the RTSC is designed to provide a transformation tool between arbitrary real-time
systems architectures. However, it currently only supports the migration of event-triggered systems
based on OSEK OS [10] to time-triggered systems based on OSEKtime [11]. The transition from time-
triggered to event-triggered systems is subject to future work. Furthermore, the RTSC is restricted to
single computing nodes with a single processor. It is not capable of handling distributed systems,
multi-processor or multi-core systems, so far. Even though, the RTSC implements a scheduling
algorithm that also handles distributed systems, it lacks a proper algorithm to do task allocation and
to schedule the communication system. There are appropriate algorithms to solve these problems
(e.g. the allocation algorithm by Peng [12]) that can be implemented within the RTSC. However,
it is very difficult to determine which data elements have to be transferred between the different
computing nodes in the general case. Altogether, we believe that both, migrating time-triggered
systems to event-triggered systems and supporting distributed systems and multi-core systems are
not just a matter of implementation but demand further research. Therefore, we will briefly discuss
the challenges coming along with these features later in that paper.

1.2. Contributions

The contributions presented in this paper can be summarised as follows:

• The notion of a real-time systems architecture specifying the structural properties of the
white-box view of a real-time system.
• A system model capturing the black-box view of a real-time system. The main purpose of the

system model is to connect the black-box view of a real-time system to its white-box view
described by ABBs.

• A prototypical implementation of a compiler-based tool, called Real-Time Systems Compiler
(RTSC), to migrate event-triggered real-time systems to a time-triggered execution
environment.

1.3. Outline

At first, we introduce the term real-time systems architecture in Section 2. In the following Section 3
we briefly sketch the abstraction Atomic Basic Block [8] that is used to capture the white-box
view of a real-time system independently of the employed real-time systems architecture. Section 4
presents a description of our system model built on top of ABBs. In Section 5 we revisit the design
of the RTSC and describe the transformation used to migrate an event-triggered to a time-triggered
system. Section 6 gives an overview over the prototypical implementation of the RTSC and Section 7
presents an evaluation of our prototype. Section 8 discusses the challenges related to migrating
time-triggered systems to event-triggered systems as well as distributed systems and multi-core
systems. The subsequent Section 9 presents related work, before Section 10 finally concludes this
paper.

2. REAL-TIME SYSTEMS ARCHITECTURES

Real-time computing systems are embedded into and interacting with a physical environment.
Together, the computing system and the physical environment form the actual real-time system [13].
In the remainder of this paper, we will use the terms real-time system and real-time computing
system synonymously, if we address the physical environment of a real-time system we will state
this explicitly.

The physical environment not only imposes functional restrictions on a real-time system but also
temporal ones. It generates stimuli and expects the real-time system to react to them within a certain
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Figure 1. Black-box view of a real-time system

time span. We refer to that interaction between the physical environment and the real-time system as
the black-box view of the real-time system.

Inside the real-time system event-handlers are activated in response to these stimuli and
simultaneous event-handlers potentially have to be coordinated. We refer to this internal structure
built by dependencies among different event-handlers as the white-box view of the real-time system.

The structural properties of the white-box view are determined by the employed real-time
systems architecture. It provides mechanisms to attach event-handlers to events and to implement
dependencies between different event-handlers. Thereby, it significantly influences the structure
of the white-box view. So, ABBs and the system model must hide exactly these properties while
preserving the dependencies among event-handlers and the relation between their representation in
the white-box view and the temporal requirements given in the black-box view.

2.1. Black-Box View

The black-box view of a real-time system describing the interaction of the real-time computing
system and its physical environment is schematically illustrated in Figure 1. The physical environment
generates stimuli and the real-time system reacts upon them computing results. There are various
means to describe the functional relation between the inputs sampled in response to the stimuli
and the computed results; finite automatons, control theory and differential equations are just a few
examples. However, we are only interested in the temporal properties of those stimuli and their
related results, so these methods are beyond the scope of this paper and are not covered here.

The temporal dependencies between stimuli and results are sketched in Figure 2. The stimuli
generated by the environment are called events. According to the temporal specification of these
events we can distinguish periodic events and non-periodic events. Periodic events are characterized
by their period, a phase specifying the temporal offset in comparison to other events and a jitter.
For non-periodic events only a minimum interarrival time is known. Every time an event arrives, a
task handling that event is triggered and a job of that task is released. The occurrence of the event is
also referred to as the release time of the job. The time interval between the release time of the job
and the actual provision of the results is called response time. For real-time systems this response
time has to be bounded by a deadline that could be hard, firm or soft depending on the impact of
its miss. Missing a hard deadline could lead to a complete system failure resulting in catastrophic
consequences. Thus, this has to be avoided by all means. The miss of a firm deadline causes the
cancellation of the associated job and renders the results computed in the meantime unusable. This
is similar for soft deadlines, but the results available so far can still be used. In our work we only
consider hard deadlines. These deadlines have to be obeyed by the internal structure of the real-time
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Figure 2. Temporal properties of the black-box view of a real-time system

system. Thus, the white-box view has to guarantee that jobs are released and scheduled properly so
that their deadlines can be met.

2.2. White-Box View

The white-box view of a real-time system provides insight on the activities that cannot be observed
from outside. This mainly applies to jobs of different tasks that are executed simultaneously and
how these jobs themselves and dependencies among them are implemented. A real-time systems
architecture provides proper mechanisms to trigger tasks, release and schedule jobs and implement
the aforementioned dependencies. These mechanisms have a significant impact on the temporal
behaviour of the real-time system and, thus, have to be considered carefully.

Triggering Tasks Releasing a job could be accomplished in an event-triggered or a time-triggered
fashion. The event-triggered option releases the job as direct reaction to the event itself. The time-
triggered version, by contrast, releases the task at a predefined point in time that does not necessarily
coincide with the arrival of the event.

Scheduling A scheduling algorithm decides which job is executed next and, thus, also noticeably
affects the latencies and the response times of these jobs. So, such a scheduling service has to provide
an upper bound for the response time of each job as long as the system is not overloaded. Usually,
this holds for deterministic scheduling algorithms. Furthermore, the white-box view of the real-time
system could be influenced by the scheduling service as well. In principle, the knowledge about
the behaviour of the scheduling algorithm could be exploited to implement dependencies among
different jobs.

Dependencies In the most cases, real-time systems service multiple events and simultaneously
execute multiple jobs of different tasks. Ideally, all of these tasks are simple tasks. In line with
Kopetz [13] such tasks do not contain synchronisation points and do not interact with other tasks.
Examples for such tasks are T1 and T2 triggered by the events E1 and E2 in Figure 3. Note that a
simple task still might produce more than one result in response to an event. So there is not necessarily
a bijective mapping between events and results in real-time systems consisting of simple tasks only.

In real-world real-time systems, however, there normally are also so called complex tasks
interacting with other tasks in various ways. These interactions can be divided into directed
dependencies and undirected dependencies.

The predecessors of directed dependencies enable their successors. The complex task T3 in Figure 3,
for example, contains a directed dependency as it forks an independent successor producing another
result. The tasks T4 and T5 in cooperation produce a single result and also form a directed dependency.
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Figure 3. White-box view of a real-time system

Here, through the provision of an intermediate result task T4 enables its successor T5. Additionally,
such directed dependencies may carry temporal delays giving information about the duration of that
dependency. Such temporal delays reflect temporal constraints and have to reproduced as precisely as
possible. A typical example is a software-based implementation of pulse-width-modulation (PWM).
Here, the signal at an output-pin has to be toggled within certain temporal intervals to produce a
given period and duty cycle. As the duty cycle normally is set at run-time the exact time intervals are
not known in advance and have to be considered at run-time.

Among undirected dependencies, by contrast, no predecessors or successors can be identified.
An undirected dependency denotes the relationship between critical sections concerning the same
resource. In Figure 3 the tasks T6 and T7 run through critical sections forming an undirected
dependency. Besides critical sections also rendezvous-based synchronisation concepts result in
undirected dependencies. These dependencies, however, can be mapped to directed dependencies
without loss of information which is not the case for critical sections. Therefore, we restrict undirected
dependencies to critical sections accordingly.

2.3. Structural Properties of a Real-Time Systems Architecture

A real-time systems architecture requires to properly connect the black-box view of a real-time
system to its white-box view. As pointed out above, it is necessary to attach event-handlers to events
and to provide measures to implement dependencies among simultaneous event-handlers. We assume
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that the measures listed below are sufficient to accomplish this task. Thus, ABBs and the system
model are designed to abstract exactly from the implementation of these measures:

(E1) It must be possible to attach tasks to periodic events. Releasing a corresponding job must be
carried out within a bounded delay.

(E2) It must be possible to attach tasks to non-periodic events. Releasing a corresponding job must
be carried out within a bounded delay.

(S1) A deterministic scheduling service must be available.

(D1) It must be possible to implement directed dependencies. Directed dependencies are
asynchronous on the side of the predecessor and synchronous on the side of the successor.
Directed dependencies may furthermore carry an explicit temporal delay.

(D2) It must be possible to implement undirected dependencies. This means, it must be possible to
coordinate critical sections properly.

3. ATOMIC BASIC BLOCKS

The main intention of ABBs is to divide the real-time system into small portions of code that are
inherently independent of the real-time systems architecture. Furthermore, ABBs should preserve the
internal dependencies among event-handlers and should be aware of the temporal requirements of
the physical environment. However, ABBs should also be very close to the original implementation
fostering the aspired compiler-based transformation tool, because ABBs provide an abstraction
playing a key role in the RTSC presented in Section 5.

We decided to use basic blocks widely used in compiler construction as basis to implement ABBs.
Basic blocks also inspired the term Atomic Basic Blocks. Furthermore, they form graphs describing
the control flow of a single event-handler and, thus, are closely coupled to the original implementation.
By aggregating one or more basic blocks ABBs segment that CFG and denote fragments of that CFG
that contain neither sources nor targets of directed dependencies and also do not cross the boundaries
of critical sections.

Therefore, points in the CFG either initiating directed dependencies or entering or leaving critical
sections exactly mark the boundaries of ABBs. These points are called ABB terminations. Among
them we distinguish joins that are starting points of inter-function dependencies and joinpoints
providing targets for these dependencies. Typically, system calls resulting in joins are forking threads,
setting flags, leaving critical sections or defining global variables. Joinpoints are created by waiting for
signals, entering critical sections or reading global variables. Artificial ABB terminations constitute
the last category of ABB terminations. They are used to ensure the proper fragmentation of the CFG,
so that the rules given below are met. Within those fragments no interaction with other event-handlers
takes place and ABBs can be considered as “atomic” with regard to such interactions. Thus, given a
CFG ABBs are extracted from that CFG following these rules:

1. An ABB aggregates one or more connected basic blocks.
2. Every ABB has exactly one distinguished entry basic block and at most one distinguished

exit basic block. Except these basic blocks no other basic blocks have preceding (entry) or
succeeding (exit) basic blocks outside that ABB.

3. ABB terminations finalise ABBs and are artificial or mark positions in the CFG that are
either origins (joins) or targets (joinpoints) of inter-function dependencies. Every basic block
succeeding a basic block in the CFG that contains an ABB termination marks the beginning of
a new ABB.

4. If an ABB termination is located within a basic block the instruction constituting that ABB
termination divides it into two subsequent parts. In case of joins and artificial ABB terminations
that instruction belongs to the first part, in case of joinpoints the instruction is assigned to the
second part.
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Message *msg;

ISR(SerialByte) {
unsigned char byte = getByte();
addTo(msg,byte);

if(isComplete(msg)) {
buffer_insert(buffer,msg);
ActivateTask(MsgHandler);

}
}

TASK(MsgHandler) {
Message *msg = 0;

msg = buffer_get(buffer);
handler(currentMsg);

TerminateTask();
}

Figure 4. Receiving messages via to serial wire

If a join or a joinpoint is located within a branch of an alternative statement or within the body
of a loop additional ABBs are needed to ensure rule number 2. As there are no appropriate ABB
terminations to mark the end of these ABBs, they are closed by artificial ABB terminations.

3.1. Local, global and undirected ABB-Graphs

Like basic blocks ABBs form graphs. First of all, ABBs reflect the control flow graphs (CFG)
described by basic blocks forming a local ABB-graph. Two ABBs ABB1 and ABB2 are connected
by a control flow dependency ABB1→ ABB2 iff the exit basic block of ABB1 is a predecessor
of the entry basic block of ABB2. The rules stated above also ensure that the local ABB-graph is a
coarsening of the CFG formed by basic blocks. Hereby, all analyses and transformations available
for CFGs (e.g. dominators and post-dominators [14, chapter 7.3]) can also be applied to local
ABB-graphs. So, CFGs can be regarded the formal foundations of ABB-graphs.

Local ABB-graphs are connected via inter-function dependencies and build a global ABB-graph.
These dependencies are established between matching joins and joinpoints. Joins and a joinpoints
match if the underlying operating system calls are compatible (e.g. setting a flag and waiting for
it) and apply to related operating system objects (i.e. the same flag). The operating system objects
affected by these system calls do not have to be identical, as the operating system could implement
a relationship among different objects also resulting in a directed dependency. Additionally, such
directed dependencies can be afflicted with a temporal delay.

Finally, critical sections represented by sets of neighbouring ABBs are arranged in an undirected
ABB-graph. Within that graph there is a dependency between two critical sections if they require
access to one or more shared resources.

These ABB-graphs comprise all relevant dependencies of a real-time system and describe
its white-box view independently of the employed real-time systems architecture, thus, hiding
architecture-specific details. These graphs are finally mapped to the desired real-time systems
architecture. Therefore, these ABB-graphs provide an essential abstraction employed by the RTSC to
systematically manipulate the real-time systems architecture of a real-time system.

3.2. Example

Figure 4 contains an example used to illustrate the concepts introduced above. It contains an interrupt
service routine ISR(SerialByte) and a thread TASK(MsgHandler). Every time a byte is
received at the serial interface ISR(SerialByte) is activated and accumulates these bytes in
a message. When a message is completed it is stored in a buffer and TASK(MsgHandler) is
activated to handle that message. The ABB-graph corresponding to that example is depicted in
Figure 5. The dashed arrows and boxes show the original basic blocks and the corresponding CFG.
The solid arrows and boxes describe the extracted ABBs and the control flow edges mirroring the
original CFG. Here, the local ABB-graph obviously mirrors the CFG as every ABB just contains a
single basic block.
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Figure 5. ABB-Graph of the example presented in Figure 4

Joins are illustrated by black circles, white circles mark joinpoints and grey circles denote artificial
ABB terminations. By definition thread entry points constitute joinpoints (see ABB5) and function
return statements are treated as joins (see ABB4 and ABB5). The join terminating ABB2 could
easily be mapped to the call of ActivateTask in ISR(SerialByte). It also marks the origin
of the inter-function dependency ABB2→ ABB5. ABB1 and ABB3 are terminated by artificial
ABB terminations to ensure rule number 2 as stated above.

4. SYSTEM MODEL

Besides the internal dependencies described the global ABB-graph the temporal properties of the
physical environment also provide vital inputs for the RTSC. In the context of time-triggered systems,
for instance, it is impossible to compute a static schedule table without that information. In event-
triggered systems it is needed to check the feasibility of the generated system. In the RTSC we use a
simple system model to capture these properties that are extracted from the black-box view of the
real-time system. In this section we describe which elements the system model comprises and how
ABB-graphs are correlated to this temporal information.

4.1. Events

All activities in a real-time system are initiated by events. The main function of events is to carry the
temporal properties of tasks. So, such events allow to estimate how often a particular task may arrive.
Among events, periodic and non-periodic events as well as physical and logical events are further
distinguished. The temporal properties of these events are characterised by those parameters already
stated in Section 2.1.

Physical events are caused by state changes in the physical environment that are signalled by
peripheral hardware components by means of interrupt requests, for instance. Logical events, on
the other side, are related to changes in the logical state of the application. Again, this could by
exemplified by the program listing shown in Figure 4. The arrival of each byte produces an interrupt;
these interrupts are physical events. After a certain amount of bytes has been received the message
is complete; this is a logical event. The distinction of physical and logical events enables a much
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better capturing of the actual temporal properties of an application. Otherwise, one would have
to assume that every byte received also entails that activation of the message-handler. However,
this is not the case as a single message consists of multiple bytes. Thus, the non-periodic event
triggering TASK(Handler) has a bigger interarrival time than the non-periodic event triggering
ISR(SerialByte) fetching those bytes.

4.2. Tasks and Subtasks

All activities that are triggered by events are subsumed under the term task. Each task consists of one
distinguished root subtask and zero or more additional subtasks. A subtask encapsulates the actual
implementation of the event-handler. The root subtask is executed every time the associated event
occurs, the other subtasks are forked (see Section 4.3) by the root subtask or one of its successors.
Tasks containing multiple subtasks reflect the situation that the same event could trigger different
handlers each combined with a different deadline. Each subtask could be assigned a soft, a firm or a
hard deadline, indicating its latest possible completion time.

The control flow structure of a subtask is described by a global ABB-graph as presented in
Section 3. It starts at the handler function implementing that subtask and comprises all functions that
are called directly or indirectly by that handler function. Whenever a subtask forks another subtask
their global ABB-graphs are connected by a directed inter-function dependency. A task’s global
ABB-graph is made up by all the interconnected global ABB-graphs belonging to those subtasks
being part of that task. As simple tasks are independent of each other their global ABB-graphs are
not connected by any directed or undirected dependencies. So the white-box view of a real-time
system, in general, is described by forest of ABB-graphs.

As tasks are assigned both, the root of the global ABB-graph and the triggering event, the system
model connects the temporal properties of the physical environment denoted by events and the
internal structure of the event-handlers as demanded in Section 2.3.

4.3. Triggering and Forking Subtasks

Forking and triggering subtasks relate to special directed dependencies targeting the root node of
a subtask in the global ABB-graph. A forked subtask is immediately ready for execution. As a
consequence, the temporal properties exposed by the forked subtasks are adopted from the forking
subtask. In our system model the forked and the forking subtasks always belong to the same task. A
triggered subtask, on the other side, does not inherit the temporal properties of its predecessor. These
are still described by the event tied to the task enclosing that subtask. Furthermore, in our system
model it is only supported to trigger the root subtask of a task. Triggering subtasks is useful when a
subtask handling a physical event results in a change of the logical state of the system and, thus, in a
logical event.

4.4. Example

The global ABB-graph in Figure 5 also serves as an example for a system model. This system model
contains two tasks consisting of a single subtask each. As both subtasks are also implemented by a
single handler function, we abstain from depicting tasks and subtasks explicitly.

These tasks are triggered by non-periodic events with an interarrival time of 200 µs
(ISR(SerialByte), physical event) and 20 ms (TASK(MessageHandler), logical event).
The directed dependency ABB2→ ABB5 implies that TASK(MessageHandler) triggers
ISR(SerialByte).

5. THE RTSC

In this section we revisit and refine the design of the RTSC [15]. First, we give an overview of
the overall design of the RTSC before we have a closer look on its central components and the
transformations taking place in these components. The main purpose of these transformations is to
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Figure 6. Design of the RTSC

map the global ABB-graph extracted from a given real-time system onto a time-triggered execution
environment by means of a static scheduling algorithm.

Although, the RTSC is intended to provide a general operating system (OS) aware compiler tool
that aids the generic configuration of the real-time systems architecture, the RTSC currently only
supports the migration of event-triggered systems to their time-triggered counterparts. In this paper
we, therefore, focus on those steps that are necessary to perform this transition.

5.1. Overview

Figure 6 depicts the conceptual design of the RTSC. The main input of the RTSC is a real-time
system (Source Implementations) using a real-time systems architecture specified by the Source OS
Specification. The RTSC outputs a modified real-time system (Target Implementations) that uses a
different real-time systems architecture specified by the Target OS Specification.

First, a front-end extracts the global ABB-graphs from the implementation of the real-time system.
Thereby, it creates an architecture-independent representation of the real-time system’s white-box
view. In the next step, these ABB-graphs are handed over to the middle-end. Here, the global
ABB-graph is prepared for the static scheduling algorithm that maps the internal structure of the
real-time system to a schedule table. Finally, an OS-dependent back-end emits the implementation of
the transformed real-time system and also creates the required configuration data for the targeted
real-time systems architecture.

The black-box view of the real-time system is specified by Task Databases (Task DBs) containing
system models as presented in Section 4. There are different Task DBs for the consumed source
real-time system (Source Task DB) and for the produced target real-time system (Target Task DB). It
is obvious that the Source Task DB has to be created manually. Deep insight and technical expertise
is necessary to precisely extract the temporal properties of the given real-time system. Though, it
might be feasible to automatically derive the Target Task DB from the Source Task DB. However,
we intentionally refrain from that possibility and the Target Task DB has to be crafted by hand, too.
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Within the Target Task DB all non-periodic events of the Source Task DB have to be mapped to
corresponding polling periodic events. We do not believe that this could be accomplished by naively
applying Nyquist’s and Shannon’s theorem [16] in general. Furthermore, this manual approach also
opens the possibility to fine-tune the temporal parameters for the time-triggered system within certain
limits.

5.2. Front-End

In order to extract an architecture-independent global ABB-graph the functions marked as subtask-
handlers in the Source Task DB are identified by means of their names in the first step. After that, the
implementation is scanned for ABB terminations and local ABB-graphs are constructed. These local
ABB-graphs are then connected by inter-function dependencies. Therefore, we search for matching
pairs of joins and joinpoints and create dependencies between the corresponding ABBs.

These dependencies, however, still are OS dependent, because they carry the explicit semantics
of the original system call. Thus, we obtain an OS-independent representation by lowering them
to generic directed dependencies. The original semantics of the system call are reflected by logical
expressions that are used to guard a joinpoint. This expression specifies the set of preceding joins
that have to be finished so that the succeeding joinpoint can be executed. In Figure 5, for instance,
ABB5 is guarded by the boolean expression [ABB2] indicating that ABB2 has to be executed
before ABB5. In the last step, we remove the original OS calls from the implementation and gain
an OS-independent representation of the source real-time system that still contains all relevant
dependencies between its tasks and subtasks.

Our front-end still suffers some restrictions and, thus, implicitly relies on some assumptions.
Currently, a flow- and path-insensitive analysis is performed to obtain the global dependency graph.
This, of course, limits the use of OS functions within library routines to a certain extent. In order
to find inter-function dependencies we precisely need to know which OS object is manipulated at a
certain line of code. This information, however, is not necessarily available within library routines as
the concerned OS object might be passed to it as a parameter at run-time. Though, we are confident
that this problem could be mitigated by a more sophisticated analysis as presented by Mohan [17].

Furthermore we expect the application itself and the OS API to be “well-formed”. This mainly
refers to a non-ambiguous usage of OS objects and OS functions. On the application level, for
instance, we assume that the same instance of a semaphore is not reused for a different purpose
at a different location. On the OS level we assume that the same system call is not used for a
different purpose. This implies that the semantics of a system call are determined by the system call
itself. As an example, we require that semaphores are not used for both, unilateral and multilateral
synchronisation. In that case one could only rely on statistical methods to figure out which type
of synchronisation actually applies and it is not possible to reliably extract a global dependency
graph [18].

These restrictions and assumptions, however, either do not go beyond those that are also present
in similar approaches or are mostly technical and could be relaxed by a more sophisticated
implementation.

5.3. Middle-End

The middle-end’s objective is to map the global ABB-graph provided by the front-end to a time-
triggered execution environment that solely supports non-preemptive threads using the static
scheduling algorithm presented by Abdelzaher and Shin [19]. However, the global ABB-graph
has to be pre-processed first, because it contains some patterns that are not handled by standard static
scheduling algorithms. This section gives an overview over the transformations performed by the
middle-end to eliminate those patterns.

The first step that is not explicitly covered here connects the global ABB-graph to the temporal
properties described by the Target Task DB. This is necessary, because the generated static schedule
also has to reflect these temporal requirements instead of those noted down in the Source Task DB.
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5.3.1. Creating private ABB-graphs In a first step we create a “private” ABB-graph for each task in
the system. This step is necessary as the employed scheduling algorithm cannot deal with elements
that are activated by a multitude of predecessors. This algorithm rather assumes that all predecessors
have to be finished before a common successor could be executed. This pattern typically occurs if a
function is called by different callers or if subtasks are forked more than once.

We address that problem by creating “private” copies of the global ABB-graphs representing
the control flow structure of a subtask. Starting at the subtask’s handler function, we recursively
inspect both the local ABB-graphs of all functions that are called within that subtask and the global
ABB-graphs of all subtasks that are forked by that subtask. If the function is called more than
once or a subtask is forked multiple times we clone that corresponding local or global ABB-graph.
Otherwise, we just assign that ABB-graph to the calling or forking subtask. Note that we solely clone
the ABB-graphs, not the actual functions. Also note that trigger dependencies are not covered here.
Triggered tasks are enabled by a preceding subtask but they are still activated by the assigned event.
So, trigger dependencies do not produce the aforementioned pattern and, thus, are handled by another
transformation described in Section 5.3.3.

5.3.2. Temporal Delays In Section 4 it was mentioned that directed dependencies may carry
additional temporal delays. The durations of these delays usually vary at run-time and have to
be reproduced as precisely as possible. As the algorithm by Abdelzaher and Shin already accounts for
message passing latencies, it might be worthwhile to treat these temporal delays that way. Message
passing latencies, however, only provide a constant upper bound for such delays that could be
determined ahead of runtime. Temporal delays, on the other hand, usually cannot be characterised by
constant values. Thus, these dependencies have to be eliminated by the RTSC before scheduling the
global ABB-graph. Although, the actual delay could be computed at run-time, we demand that it
could be specified either as constant value or a list of constant values enumerating all possible delay
values.

The RTSC currently supports three different categories of temporal delays. These are delayed
forks, delayed trigger dependencies and self-trigger dependencies that are special versions of delayed
triggered dependencies. Delayed forks are first mapped to delayed trigger dependencies that are
reduced to trigger dependencies handled by the transformation described in Section 5.3.3.

Figure 7 (a) depicts the task Delay containing two subtask TASK(Task1) and TASK(Task2).
Here, TASK(Task1) forks TASK(Task2) with a delay of either 200 ms or 1200 ms. In the first
step, shown in Figure 7 (b), TASK(Task2) is removed from the task Delay and transferred to the
task Delay*, thus, converting the delayed fork into a delayed trigger dependency. The newly created
task Delay* is triggered by an event identical to that triggering Delay.

The delayed trigger dependency finally is resolved by an according phase shift of the triggered
task and a period counter. For each possible delay value the RTSC determines a phase shift
phase = delay mod period and for all resulting phase shifts it creates one copy of the task Delay*.
In Figure 7 (c) this results in two tasks Delay* and Delay** triggered by events with a phase of
200 ms and 400 ms. If the delay exceeds the period of the triggering task a simple phase shift is not
sufficient and a period counter explicitly keeping track of the delay is needed. In Figure 7 (c) this
period counter is implemented by a global variable pCntr introduced by the RTSC. The RTSC also
inserts code to initialise it when TASK(Task1) triggers TASK(Task2) and to decrement it every
time TASK(Task1) is released. Subtask TASK(Task2) only is executed if pCntr equals 0 and
the delay matches the phase shift. This is achieved by a wrapper function that checks these conditions
and that is also depicted within Figure 7 (c). The actual execution of TASK(Task2) within that
wrapper is adumbrated by a direct call of the subtask.

Self-trigger dependencies are similar to delayed trigger dependencies but the predecessor and the
successor belong to the same task. Hence, a phase shift is not really helpful here. Instead, we solely
rely on a period counter to reproduce the desired delay. Assuming task Delay was a self-triggering
task, it would not possible to reproduce the delay of 1200 ms by a period counter and a period of 800
ms. This only would be possible if all delays could be expressed as a product of the period counter and
the period of the self-triggering task. We can achieve this by setting the task’s period to the greatest
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   delay == 400ms){

Figure 7. Resolving temporal dependencies

common divisor of the original period and all possible delay values. In the example given above
the new period would be computed as follows: period = gcd(800ms, 400ms, 1200ms) = 400ms.
Initialising and decrementing the period counter is carried out identically to delayed trigger
dependencies. Though, the wrapper function does not have to check the phase shift, of course,
it is sufficient if the period counter equals 0.

5.3.3. Triggering Tasks Here, we take care of trigger dependencies introduced in Section 4. If a task
is triggered by another task, it basically maintains the temporal properties specified by its associated
event. Nevertheless, the triggering predecessor needs to be completed before the triggered task can be
executed. Hence, in a time-triggered execution environment, the predecessor indicates its completion
by setting a flag. The triggered task is executed when the flag is set or aborts otherwise.

Here, the RTSC also inserts clones of tasks handling logical events that are triggered by the handler
of their related physical event. This is required if the temporal distance between the physical and the
logical event is too big and impedes a timely handling of the logical event. By inserting additional
logical events this temporal distance can be eliminated to enable a timely execution of the assigned
task.

5.3.4. Spanning the Hyperperiod Creating a static schedule often is equivalent to ordering a directed
acyclic graph (DAG) with respect to temporal constraints. The linearised DAG then is executed
cyclically. As a consequence the DAG comprises all activities of the hyperperiod of the given real-
time system. Hence, the RTSC expands the real-time system described in Target Task DB accordingly.
This transformation step could be further refined to the following sub-steps:

1. Convert the guards into disjunctive normal form (DNF)
2. Compute the hyperperiod
3. Clone tasks as needed
4. Re-match joins and joinpoints

The first step is just a preparation step for matching joins and joinpoints later on. Here, we compute
the DNF for every logical expression guarding a joinpoint that is present in the system. The second
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Figure 8. Re-matching Joins and Joinpoints

step computes the hyperperiod hp. This is the least common multiple of all periods pi of all the
events Ei in the Target Task DB: hp = lcmi pi.

After that, the actual expansion of the application is carried out. The global ABB-graph of every
task whose associated event in the Target Task DB has a period that is smaller than the hyperperiod
is cloned as often as needed. The cloned tasks are then triggered by events Ei whose period pi,new is
set to the hyperperiod hp and their phase phi,new is set to the sum of their original phase phi,old and a
multiple of their original period pi,old: phi,new = phi,old + kpi,old; k = 0...bhp/pi,oldc. After this
step, all events of the system have the same period – the hyperperiod – and their original period is
mapped to an appropriate phase.

When cloning tasks it is possible that also joins and joinpoints are duplicated. Such a situation is
depicted in Figure 8 (a). Here, the task containing the joinpoint ABB4 is released with a period of
5 ms and, thus, is executed twice as often as the tasks containing the joins ABB1 and ABB5 that are
triggered every 10 ms. Furthermore, ABB4 is guarded by the disjunction [OR(ABB1,ABB5)] that
could not be handled by the envisaged scheduling algorithm. So, naively duplicating that joinpoint
and the incoming dependencies is not very helpful. Instead, we eliminate such guards by re-matching
joins and joinpoints.

So, we rip up all dependencies connecting joins and joinpoints of different tasks before cloning the
global ABB-graphs. We then try to find a set of joins for each joinpoint that satisfies the guard of that
joinpoint. As the guards are given in DNF this is rather easy because it is sufficient to satisfy a single
clause of the guard. At this, we assume that each join and joinpoint can be replaced by one of its
clones and that each join could be used to satisfy at most one guard. In the end the RTSC chooses that
set of joins that permits the earliest possible start time of the joinpoint and minimises the temporal
distance between these joins and the joinpoint. Here, the temporal distance is computed using the
temporal properties stored within the Target Task DB.

As this search is realised by a relatively simple list-scheduling-like heuristic, it is by no
means guaranteed that a suitable matching is found if such a matching exists. Additionally, more
sophisticated matching algorithms could be used. An algorithm targeting a similar problem that is
based on linear programming is presented by Cuny [20], for instance. In our previous experiments,
however, the heuristic we implemented did not impose serious restrictions on the RTSC. So, we
abstained from implementing such algorithms for now.

Figure 8 (b) shows the expanded version of Figure 8 (a). Here, the subtask TASK(Task2) is
duplicated because it is executed twice as often as TASK(Task1) and TASK(Task3) resulting in
the clone TASK(Task2*). Along with that subtask the joinpoint ABB4 is cloned, too, producing
another joinpoint ABB4∗. The disjunction [OR(ABB1,ABB5)] has been resolved by assigning
the join ABB1 to the joinpoint ABB4 and ABB5 to ABB4∗. This is only possible because the
joinpoints ABB4 and ABB4∗ are semantically equivalent and in each case one join is enough to
satisfy the original guard.
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Figure 9. Serialising the ABB-graph

5.3.5. Serialising the ABB-graph Temporally ordering ABBs belonging to alternate branches of
if-else-statements is not very helpful because in no case all branches are executed. We try to remove
such fragments from the ABB-graph by serialising the ABB-graph as presented by Mohan [17]. This
is accomplished by shifting outgoing inter-function dependencies to succeeding ABBs in the ABB-
graph and incoming inter-function dependencies to preceding ABBs. When shifting dependencies, of
course, we must ensure that we do not create cycles. If we can remove all inter-function dependencies
targeting that statement or originating from it we also can collapse all ABBs making up the if-else-
statement.

Figure 9 revisits the ABB-graph presented in Figure 4 and exemplifies the effect of serialising
the ABB-graph. If the original dependency ABB2→ ABB5 in Figure 9 (a) could be shifted to the
dependency ABB4→ ABB5 as indicated in Figure 9 (b), then we can also collapse ABB1, ABB2,
ABB3, ABB4 into ABB4∗ as shown in Figure 9 (c), thereby, removing that problematic fragment.

In general, we assume that the ABB-graphs are acyclic. So, we neither expect dependencies
that reach across the boundary of the hyperperiod nor do we deal with “real cycles” causing
deadlocks. However, there still might be patterns that cannot be serialised by naively shifting
incoming and outgoing dependencies. Such patterns typically result from alternating producer-
consumer interactions [17]. If such patterns should be flattened, either the producer or the consumer
would have to be statically split in at least two fragments via some sort of source code transformation.
Though, this is not supported by the RTSC, yet.

5.3.6. WCET-Analysis Another necessary input for static scheduling is the WCET of the elements to
be scheduled. For this purpose we integrated an automated WCET-analysis in the RTSC. Current
WCET-analysis methods consist of two parts: a high-level analysis and a low-level analysis. The
high-level analysis examines the CFG of a given function and derives a maximum flow problem that
is usually solved via linear programming [21]. The WCET of the basic blocks that serve as input for
the high-level analysis are determined by the low-level analysis. The low-level part examines the
machine code and performs an extensive hardware-dependent analysis to calculate the WCET of the
given basic block.

We implemented the high-level analysis within the RTSC while we use an external tool for
the low-level part. For additional input parameters needed for the high-level analysis that cannot
be determined from the source code directly (e.g. loop counts or recursion depths), we rely on
annotations.

5.3.7. Scheduling The last step in the middle-end is the computation of a static schedule that arranges
all ABBs in an absolute temporal order. Successfully scheduling an ABB-graph demands the proper
handling of directed order dependencies, undirected mutual exclusion dependencies, as well as
release times and deadlines. Hence, we chose the algorithm by Abdelzaher and Shin [19] as it meets
all our requirements. Furthermore, it offers the possibility to target multi-processor systems and
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Figure 10. Scheduling ABBs

allows to incorporate an additional message scheduling algorithm later on. Albeit, the RTSC does
currently not take advantage of these features.

Whereas, the order and mutual exclusion dependencies needed as input can easily be extracted
from the ABB-graph while the release times and deadlines are stored in the Target Task DB. ABBs
significantly differ from “modules” that constitute the original unit of scheduling used by the
aforementioned algorithm. These modules implicitly enclose complete functions. So, a function is
never scattered over several modules. By contrast, a single function could easily comprise multiple
ABBs. If all those ABBs were handled equivalently that would lead to sequences of ABBs where
ABBs of different functions are intermixed without caution (see Figure 10 (a)). This is caused by
the EDF-algorithm that is used inside the algorithm of Abdelzaher and Shin. EDF schedules ABBs
according to their deadlines that are normally specified on a per task base. The deadline ti for ABBi

then is determined recursively with respect to the deadlines tj of its successors ABBj and their
WCET ej : ti = minj(tj − ej). So, ABBs belonging to the same function may be allotted different
deadlines and, thus, also different priorities favouring a intermixture of ABBs belonging to various
functions.

As this intermixture also causes non-local jumps between different functions inducing significant
runtime overhead this is not desired. For this reason, we try to schedule ABBs belonging to the
same function adjacently (see Figure 10 (b)). This is achieved by a slight modification of the EDF-
algorithm. All ABBs belonging to the same subtask are assigned the same deadline. As the RTSC
explicitly implements order dependencies, it is not necessary to rely on adapted release times and
deadlines to ensure those precedence constraints. Additionally, we break ties in the EDF-algorithm
in favour of that ABB that belongs to the same function like the ABB that was scheduled at last.

Along with the construction of the schedule table it is also guaranteed that the temporal
requirements denoted in the Target Task DB are met. If it is not possible to satisfy these requirements
the construction of the schedule table would fail. Thus, it is not necessary to explicitly analyze the
timeliness of the generated system.

5.4. Back-End

The task of the back-end is to generate code that can be executed by the targeted RTOS. In the specific
case, we generate configuration data and an application skeleton for the targeted operating system.
The application skeleton just calls the event-handlers at predefined points in time that are specified
by the previously computed static schedule. The original application (i.e. all the implemented
event-handlers and libraries) is directly emitted as assembly code for the target system.

6. IMPLEMENTATION

The RTSC is implemented by a set of passes for the LLVM compiler framework [22]. All our
transformations work on the virtual instruction set used as intermediate representation within the
LLVM that also serves as basis for ABBs. Currently, we use the GCC-based front-end of the LLVM
to compile existing real-time applications written in the C programming language into the LLVM
representation. We also make use of standard transformations and analyses provided by the LLVM
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for standard compiler optimisations and the code generation framework to emit assembly code for
the target processor.

While we implemented the high-level part of the WCET-analysis on our own, we rely on an
external tool for the low-level part. Therefore, we integrated the static WCET-analysis tool aiT∗ into
the RTSC. We use it to compute the WCET for every single basic block in the system. Unfortunately,
the implemented WCET-analysis is rather pessimistic. That is mainly owed to the following two
reasons: Firstly, the hardware-dependent low-level analysis is performed in isolation for each basic
block. So, the state of the processor pipeline as left by the preceding basic block is lost leading to a
higher estimated WCET. Secondly, we implemented a basic path- and flow-insensitive high-level
analysis only. Especially in case of nested loops, the path- and flow-sensitive analysis of the aiT
yields much better results, as the bounds of the inner loop often depend on the current state within
the outer loop. So far, these shortcomings did not constitute serious restrictions for the RTSC, but we
plan to mitigate them by analysing larger pieces of code directly via the aiT.

The RTSC currently encompasses a front-end for an artificial event-triggered OS API and
major parts of the OSEK OS API [10]. The artificial API comprises services for forking and
triggering subtasks, lock variables, message passing and flags. While working on the RTSC, we first
implemented this artificial API and ported the front-end of the RTSC to the API of OSEK OS later
on. As the expressiveness of these APIs is very similar porting the front-end was relatively easy and
straightforward. On the back-end side, we currently support time-triggered systems only. Here, we
target operating systems that comply with OSEKtime specification [11]. Currently we target the
TriCore processor [23] by Infineon, as we already have extensive experience using it and there are
several RTOS available for that processor. Last but not least, the WCET-analysis tool aiT is available
for exactly this processor. As the LLVM did initially not support it we also implemented a LLVM
back-end for the TriCore processor.

7. EVALUATION

We have evaluated our the RTSC tool with a real-time system that mimics a highstriker, the well-
known attraction on fairs. This system constitutes a fairly challenging evaluation scenario as it
comprises non-periodic events only and, thus, could serve as prime example for an event-triggered
system. The control application also was developed in an event-triggered fashion and we transformed
it into an equivalent time-triggered system. In our quantitative evaluation we mainly paid attention
to temporal parameters that are relevant for a successful operation of this system. For a better
understanding of the observed parameters we first give a more elaborate explanation of the evaluation
scenario and then take a look at the measured parameters.

7.1. Evaluation Scenario

Our highstriker is equipped with a Plexiglas tube that houses an iron projectile. The projectile is
controlled by switching coils that are attached to the tube in an equispaced manner. Hereby, the
projectile can be guided almost arbitrarily between the different coils. Right above each coil there is
a light barrier that is used to track the position and the direction of the projectile.

The control application itself is state machine-based. A step in the state machine is either triggered
by the projectile leaving or entering a light barrier or a countdown indicating that the next step must
be taken. The countdown is set up within a step of the state machine itself, as some actions require
the next step to be carried out within a certain temporal distance. All these occasions are subsumed
by the logical event SMStep. If several consecutive steps in the state machine are necessary, all these
steps are executed in a row within a loop. So, the task handling SMStep is a self-triggering task as
described in Section 5.3.3. The task is also triggered by the task handling the physical LightBarrier
event. As it is not necessary to perform a state machine step every time a light barrier is entered or
left. So, the task SMStep is triggered but not forked by the task LightBarrier.

∗http://www.absint.com/ait
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Event Interarrival time Task Deadline
LightBarrier 12.8 ms CSYSTEM P ISR 1ms
SMStep 37 ms CSYSTEM FSM Task 1ms

Table I. Source Task DB

Event Period Task Deadline
LightBarrier 500 µs CSYSTEM P ISR 500 µs
SMStep 37 ms CSYSTEM FSM Task 500 µs

Table II. Target Task DB

Both events are obviously non-periodic. The minimum interarrival times are achieved when the
projectile crosses two subsequent light barriers at its maximum speed of roughly 6.14 m/s. The
maximum speed is achieved when the projectile freely falls down from the top of the Plexiglas tube
and is continuously accelerated by gravity. The length of the projectile of 8.2 cm leads to a minimum
interarrival time of about 12.8 ms for the physical event LightBarrier and the distance of 23 cm
between two light barriers leads to an minimum interarrival time of 37 ms for the event SMStep.
The physical event LightBarrier is handled by the subtask CSYSTEM_P_ISR and the logical event
SMStep by the subtask CSYSTEM_FSM_Task. The deadlines of 1 ms are empirical values we gained
from the operation of our highstriker experiment. The deadline of the task CSYSTEM FSM Task
handling the logical event SMStep refers to the physical event LightBarrier. This information is
summarised in the Source Task DB that is depicted in Table I.

The Target Task DB that is derived from the Source Task DB manually is shown in Table II.
Here, the non-periodic events of the Source Target Task DB are converted into polling periodical
events. According to Briand [24] such events have to be polled cyclically with a period that is at most
half as long as the deadline of the corresponding handlers. So, the periods of these events and the
corresponding deadlines are adjusted to a value of 500 µs. Note that the period of the event SMStep
intentionally is not set to 500 µs to demonstrate treatment of self-triggering task within the RTSC.
As SMStep is triggering itself the RTSC will compute a suitable period so that the temporal delays
belonging to that self-trigger dependencies could be reproduced. Both events are handled by the
same subtask that is also given in the Source Task DB.

7.2. Evaluation Results

The structure of the control application is illustrated by the global ABB-graph presented in Figure 11
that is extracted by the RTSC. Both tasks LightBarrier and SMStep can easily be identified. The
ABB-graph of subtask CSYSTEM_P_ISR all in all comprises three functions while the ABB-graph
of subtask CSYSTEM_FSM_Task consist of a single function, only. The complete implementation
of the highstriker encompasses numerous functions, of course. As these functions do not contribute
to that global ABB-graph, they are not shown here. Furthermore, the dependencies triggering
(ABB7→ ABB9) and self-triggering (ABB10→ ABB9) the task SMStep are clearly visible.

The schedule table generated by the RTSC is depicted in Table III. It unnecessarily spans a
hyperperiod of 1 ms, although 500 µs would have been sufficient. We were able to trace this back to
a weakness in the implementation of the RTSC when inserting additional logical events as described
in Section 5.3.3. The initial offset of 10 µs is owed to a restriction in the targeted RTOS that does not
support threads that have to be started right at the beginning of the schedule table. As mentioned
above, the RTSC automatically adjusted the period of the task SMStep to 500 µs, so the temporal
delays belonging to the self-trigger dependencies can be reproduced. Besides the creation of the
Target Task DB the transformation did not require any manual intervention. Particularly, there was
no need to explicitly convert the interrupt service routine CSYSTEM_P_ISR into a polling variant.
The original system suffered from bouncing light barriers, thus, CSYSTEM_P_ISR already had to
filter relevant interrupts anyway.
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Start time Task WCET
10 µs CSYSTEM P ISR 19,25 µs
30 µs CSYSTEM FSM Task 75,87 µs

510 µs CSYSTEM P ISR 19,25 µs
530 µs CSYSTEM FSM Task 75,87 µs

Table III. Schedule Table generated by the RTSC

Latency Response Time
min avg max min avg max

Source 6 µs 8 µs 10 µs 9 µs 12 µs 18 µs
Target 13 µs 268 µs 507 µs 24 µs 276 µs 518 µs

Table IV. Event-handler latencies and response times

Source Target
Countdown min avg max min avg max
4 3,05 3,63 4,01 4,00 4,00 4,00
9 8,01 8,46 8,98 9,00 9,00 9,00
14 14,00 14,00 14,00 14,00 14,00 14,00
18 17,05 17,50 17,99 18,00 18,00 18,00
86 86,00 86,00 86,00 86,00 86,00 86,00
950 949,07 949,49 950,00 950,00 950,00 950,00

Table V. Countdown accuracy (in milliseconds)

Using that schedule table and the transformed implementation generated by the RTSC, we were
able to operate our highstriker experiment the same way we already did it using the original event-
triggered implementation. Besides the successful operation of the highstriker, we also performed a
quantitative comparison of the generated and the original system regarding the following aspects: the
event handler latencies and their response times (Table IV), the accuracy of the countdowns (Table V)
and the overall CPU utilisation. †

As shown in Table V the generated target system reproduces the temporal delays of the self-trigger
dependency very accurately. Although, the delays are already closely followed by the event-triggered
source system, the time-triggered system performs even better. However, it is clearly outperformed
by the event-triggered source system regarding event-handler latencies, response times and CPU
utilisation. The latencies depicted in Table IV range from the entrance of CSYSTEM_P_ISR
to the entrance of CSYSTEM_FSM_Task while the response times last until the termination of
CSYSTEM_FSM_Task. The maximum latency and the maximum response time in the target
system result from the fact that subtask CSYSTEM_FSM_Task is scheduled 20 µs behind subtask
CSYSTEM_P_ISR, summing up to the maximum possible latency of 520 µs. Due to overhead
induced by polling non-periodic events the low overall CPU utilisation of only about 0.5% in the
original system increased significantly to 4.1% in the generated time-triggered system.

Although, the quantitative comparison seems not to be very promising, we account this
transformation a success. Especially the measured response times indicate that the generated real-time
system complies to the temporal requirements of the original real-time system, too. Thus, we were
able to automatically transform an inherently event-triggered system servicing only non-periodic
events into a functional equivalent time-triggered system. It is well known that time-triggered systems

†All benchmarks have been performed on an Infineon TriCore TC1796 processor with a CPU clock speed of 100 MHz
and a system clock speed of 50 MHz. Data and code were completely located in the internal RAM of the TC1796. The
STM-timer of the TC1796 was used for time measurement. The CPU utilisation was determined by directly inspecting the
CPU utilisation of an idle function by the Trace32 debugger by Lauterbach.
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systematically suffer higher latencies and a higher CPU utilisation when non-periodic events are
mapped to polling tasks [24, 25]. So, we think that primarily the time-triggered mode of execution
has to be blamed for the overhead observed within the quantitative comparison. Therefore, we are
confident that the RTSC yields better results for real-time systems that service a higher fraction of
periodic events.

8. DISCUSSION

Although, the main goal of the RTSC is the generic configuration of the real-time systems architecture
it currently only supports the migration of event-triggered to time-triggered systems consisting of
single computing node. In this section we discuss the challenges that have to be tackled when
the RTSC also should migrate time-triggered to event-triggered systems and target distributed and
multi-core systems.

8.1. Migrating Time-Triggered to Event-Triggered Systems

Migrating time-triggered to event-triggered systems significantly differs from the transformation
that is currently implemented by the RTSC. Mapping the global ABB-graph to a set of possibly
concurrent threads, for instance, is exactly the opposite of linearising it as far as possible using a
static scheduling algorithm. The main issue, however, is the extraction of the global ABB-graph from
a time-triggered system.

In event-triggered systems directed and undirected dependencies among different subtasks are
usually implemented explicitly via special system calls provided by the real-time systems architecture.
As no such system calls exist in time-triggered systems directed and undirected dependencies
are established implicitly using a static schedule table ordering event-handlers appropriately. So,
dependencies are no longer visible within the implementation of the real-time system.

Therefore, the only chance to automatically extract the global ABB-graph from a time-triggered
system is to thoroughly analyse the accesses to shared memory locations and correlate these data
dependencies with the temporal order enforced by the schedule table. However, this is exacerbated as
different subtasks may use shared memory locations by accident without being ordered by a directed
dependency. Undirected dependencies, on the other hand, cannot be determined for sure as well.
While it is feasible to find possible data races, atomicity violations emerging when correlated memory
locations are inconsistently updated or read, cannot be detected reliably [26]. So, these analyses
only yield hints to possible directed or undirected dependencies but cannot give any evidence for
their existence. Thus, we assume that time-triggered systems have to be enriched by annotations to
facilitate the extraction of a global ABB-graph.

8.2. Distributed and Multi-Core Systems

Many real-time systems are distributed computing systems and multi-core systems are becoming
more and more popular also among real-time embedded systems. So, automatically mapping ABB-
based dependency graphs to such systems seems to be very promising. There are already several
considerable results in the area of scheduling theory for time-triggered real-time systems dealing
with static scheduling and allocation strategies for that problem. Some examples are the algorithms
published by Xu [27] and Peng [12] or the algorithm implemented within the RTSC [19]. But also
for event-triggered systems similar work has been done [28]. There are, however, some problems
that must be solved before such algorithms can be used to distribute a global ABB-based dependency
graph onto a distributed system or a multi-core system.

One of these problems already became evident in Section 5.3.7. ABB-graphs are rather fine-grained
and ABBs belonging to the same function should also be allocated to the same computing node, as
non-local jumps between different cores or nodes have an adverse impact on the overall performance
of the system. Consequences of such non-local jumps are for example invalidated code and data
caches and also a higher consumption of network bandwidth as local state has to be transferred to a
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remote node in some cases. So, these allocation strategies have to be adapted to respect the cohesion
of such tightly related ABBs.

Another problem is inter-task communication. Tasks may exchange data explicitly via message
passing or implicitly via shared data structures for instance. While message passing could easily be
identified within the source code this is very challenging for shared data structures. Without knowing
the precise semantics of a queue, for instance, it is hard if not impossible to reason that the values
dequeued by the consumer are those enqueued by the producer even if producer and consumer are
additionally synchronised via directed dependencies. However, if the different tasks of a real-time
system should be on the nodes of a distributed system all these “hidden” communication channels
must be mapped to explicit message passing.

The situation is somewhat relaxed for multi-core systems as shared memory normally is available
to the different cores of multi-core node. So, this kind of communication does not have to be mapped
to message passing at all. In the worst case, the application has to be enriched by means of annotations
manually to identify all relevant communication channels. Besides that, current industrial standards
like the AUTOSAR RTE specification [29] require that communication between different components
is based on message passing. So, these communication channels are already explicitly visible.

Furthermore, the topology and the properties of the distributed system must be available to the
RTSC. Otherwise it is, for example, impossible to allocate bandwidth on a communication channel.
So the system model has to be enriched by appropriate mechanisms to describe the computing
nodes and available communication channels connecting them along with their bandwidth and
the communication paradigm they provide. Fortunately, there are also several description methods
available for this purpose. Examples are SysML [30] or a modelling language presented by Huber to
describe execution platforms [31] in DECOS [32].

9. RELATED WORK

The RTSC is not the first attempt to apply compiler techniques to improve and automate the
construction and analysis of real-time systems. Program slicing was employed in by Gerber [33]
and Gopinath [34] to improve the schedulability of real-time systems. Kirner [35], for instance,
enhances WCET-analysis by transforming flow information within optimising compilers. Thereby,
loop annotations are also maintained across transformations like loop unrolling. Other approaches are
based on domain-specific languages to describe the temporal structure of the black-box view of real-
time systems [36, 37, 38]. Special compilers and code generators exploit the temporal information
embedded into these descriptions to generate application skeletons that adhere to the specified
temporal constraints and to reason about the feasibility of the whole real-time system. However, none
of these approaches attempts to extract the white-box view of a real-time system or to systematically
manipulate it in order to alter the real-time systems architecture.

There are also efforts the automatically extract relevant parts of the white-box view of a real-time
system in an automated fashion. Albers, for example, presents a method to analyse the schedulability
of real-time systems based on hierarchical event streams that allow to compute upper bounds for
the number of task activations [39]. Hierarchical event streams are created bottom up starting from
simple events streams that are directly extracted by a static source code analysis finding those places
where a task is activated. Depending if the task is activated within an alternative statement or a loop
the simple event streams are then combined accordingly into hierarchical event streams. Mohan and
Helander automatically extract global dependency graphs from the source code of real-time systems
also reflecting inter-task dependencies [17]. These graphs are used to analyse and visualise unneeded
and potential parallelism that can be exploited to scale the application to smaller or bigger computing
nodes. In contrast to the RTSC, these approaches neither cover mutual exclusion nor are these graphs
used to exchange the underlying real-time systems architecture.

Considerable work has also been done regarding the provision of model-based integrated tools and
tool chains that support the development of software for real-time systems. Among the numerous
examples are SysWeaver [40], Simulink [41] or TDL [37] or well-known commercial products like
TargetLink. Most of these approaches either start from an abstract model-based input or the input
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already exposes a very similar real-time systems architecture as the target system. Thus, there is no
need to abstract from an underlying real-time systems architecture.

Further approaches that are comparable to ours are implemented by Anvil [42] or PORTOS
[43]. However, these approaches make assumptions on the targeted real-time systems architecture
– PORTOS, for instance, requires blocking communication – and, thus, are not suited to provide a
generic tool-based manipulation of the real-time systems architecture.

As the development of multi-threaded concurrent systems has always been an ambitious
undertaking there are also a lot of formal techniques to describe such systems and the
dependencies among the different threads. Well-known examples for these techniques are CSP [44],
path expressions [45], Petri nets [46] or mathematical logic [47, 48, 49]. These techniques are mainly
used to prove higher abstract properties such as the absence of deadlocks or starvation. Although,
current efforts even extract such descriptions automatically from a given system [18, 26, 50], these
techniques are not suited to be used in transformation tool like the RTSC. The main problem is that
these description are rather abstract and are not connected closely enough to the implementation
of the considered system. This makes it difficult to develop code transformations based on such
descriptions. ABBs, in contrast, are directly derived from control flow graphs and, thus, are exactly
reflecting the control flow structure of the implementation.

All in all, the authors of this paper are not aware of any other tool or tool-chain that explicitly aids
the migration between different real-time systems architectures. Most of these tools assume some
kind of abstract, model-based input and, hereby, automatically gain independence of the employed
real-time systems architecture. The RTSC, in contrast, works on the much lower level of an existing
implementation. So, the RTSC is also able to deal with existing software.

10. CONCLUSION

In this paper we presented the first prototype of the Real-Time Systems Compiler (RTSC), a tool that
assists in migrating event-triggered to time-triggered systems. The long-term goal of the RTSC is to
achieve the generic configuration of the real-time systems architecture. The key idea is to hide the
real-time systems architecture used to implement the internal structure – the white-box view – of
a real-time system behind an appropriate abstraction and connect that abstraction to the temporal
properties of the physical environment of the real-time system – its black-box view. We propose a
global dependency graph made up of Atomic Basic Blocks as a proper abstraction for that purpose. We
furthermore combined this dependency graph with a system model to connect the internal structure
of the real-time system to the temporal properties of the physical environment. We also demonstrated
the applicability of our approach by implementing a transformation process on the basis of ABBs
that converts an event-triggered system into a time-triggered one and, thus, exchanges the real-time
systems architecture of a given real-time system. Although, the RTSC still is an early prototype, it
can already handle complete real-time systems significantly going beyond mere test-cases. Thus, it
provides a profound base for further research and a comfortable alternative to ad-hoc techniques
that are still widely used in the development of time-triggered real-time systems. Nonetheless, this
prototype was just a first step and there are more challenges that need to be tackled.
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