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Abstract—Event latency is considered to be one of the most
important properties when selecting an event-driven real-time
operating system. This is why in previous work on the SLOTH
kernel, we suggested treating threads as ISRs—executing all
application code in an interrupt context—and thereby reducing
event latencies by scheduling and dispatching solely in hardware.
However, to achieve these benefits, SLOTH does not support
blocking threads or ISRs, but requires all control flows to have
run-to-completion semantics.

In this paper, we present SLEEPY SLOTH, an extension of
SLOTH that provides a new generalized thread abstraction that
overcomes this limitation, while still letting the hardware do
all scheduling and dispatching. SLEEPY SLOTH abolishes the
(artificial) distinction between threads and ISRs: Threads can
be dispatched as efficiently as interrupt handlers and interrupt
handlers can be scheduled as flexibly as threads.

Our SLEEPY SLOTH implementation of the automotive OSEK
OS standard provides much more flexibility to application devel-
opers while maintaining efficient execution of application control
flows. SLEEPY SLOTH runs on commodity off-the-shelf hardware
and outperforms a leading commercial OSEK implementation by
a factor of 1.3 to 19.

I. INTRODUCTION AND MOTIVATION

A core task that an operating system has to fulfill in an
event-driven real-time system is to manage the control flows
present in the computing system, which encompass threads
and interrupt service routines (ISRs).

Threads are managed by software: They are activated on
behalf of software events only (such as signaling a semaphore),
and they are scheduled and dispatched by software mecha-
nisms, usually provided by the operating system (OS). ISRs,
on the other hand, are managed by hardware: They are
activated by hardware events (such as a periphery device
requiring service), and they are scheduled and dispatched
by hardware mechanisms, usually provided by the interrupt
controller. Table I lists those two types of control flows in
Lines 1 and 2, together with a comparison of their semantics:
Threads can block and resume execution at a later point in
time, while ISRs have to run to completion. Traditional threads
and ISRs form dual priority spaces, with ISRs having a higher
priority than all threads in the system.

A. The Issue

From the conceptual point of view, the forced distinction
between threads and ISRs is problematic: The control flow
semantics of an event handler (blocking or run-to-completion,
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as well as its priority relative to other event handlers) should
not be defined by the source of the event (hardware or
software), but by the requirements of the real-time applica-
tion. Furthermore, the dual priority spaces make the system
susceptible to the real-time issue of rate-monotonic priority
inversion1 [3].

Several solutions have been proposed to overcome these
issues by employing threads only: In the Solaris OS kernel,
ISRs can be promoted to threads upon request, enabling
blocking semantics in hardware event handlers [8]. At that
point, the management and scheduling of the ISR control
flow is switched from the hardware to the OS (see Line 4
in Table I). However, to implement this flexibility, Solaris
still has to keep the dual priority spaces, with “ISR threads”
having a higher priority than all other, “regular” threads.
To tackle that problem, solutions have been proposed in
which short ISRs always activate a corresponding thread to
run and then terminate immediately [3], [4]. This way, all
event handlers (hardware and software) are scheduled and
dispatched by the OS as threads in a single priority space.
However, since OS-managed threads incur significant software
overhead compared to ISRs, this advantage comes at a major
performance and latency cost: The latency of ISRs becomes
3–10 times higher—even if parts of the ISR processing are
outsourced to an external co-processor [21].

That is why in previous work on the SLOTH embedded ker-
nel, we have proposed the opposite approach: to have threads
run as ISRs [5]. By triggering the corresponding interrupt
from within kernel software when activating a thread, SLOTH
relies on a single priority space—the interrupt priority space
managed by the hardware—and lets the hardware interrupt
arbitration system perform the priority-based scheduling and
dispatching (see Line 5 in Table I). The SLOTH kernel, which
implements this idea, is simple, small, and fast in scheduling
and switching control flows (2–7 times faster than in a tradi-
tional kernel). Nevertheless, the SLOTH kernel has a significant
drawback: It does not support blocking threads, which need
an execution stack of their own. Since it only supports run-to-
completion control flows, its execution and preemption pattern
is strictly last-in, first out (i.e., stacked)—which is why it is a
perfect match for execution using an interrupt controller with
multiple interrupt levels, since interrupt activations are also
strictly stacked and preempted based on their priorities.

1This term describes the phenomenon that a high-priority thread can be
interrupted and delayed by a low-priority ISR because the hardware-managed
ISR priorities are inherently higher than the OS-managed thread priorities.



Activation Scheduling/Dispatching Execution Semantics
1 Traditional Threads / OSEK Extended Tasks by OS by OS Blocking
2 Traditional ISRs by HW by HW Run-to-Completion
3 OSEK Basic Tasks by OS by OS Run-to-Completion
4 Solaris IRQ Threads [8] by HW by HW → by OS Blocking
5 SLOTH Tasks [5] by OS or HW by HW Run-to-Completion
6 SLEEPY SLOTH Threads by OS or HW by HW Run-to-Completion or Blocking

TABLE I
TYPES OF CONTROL FLOWS AND THEIR PROPERTIES (ACTIVATION AND SCHEDULING/DISPATCHING BY HARDWARE (HW) OR THE OPERATING SYSTEM

(OS), AS WELL AS EXECUTION SEMANTICS) IN TRADITIONAL OPERATING SYSTEMS, IN OSEK, IN SOLARIS, AND IN SLOTH, COMPARED TO THE
THREAD ABSTRACTION PROVIDED BY SLEEPY SLOTH.

B. About This Paper

In this paper, we aim to remedy this situation by designing
a new thread abstraction that combines the advantages of the
SLOTH control flow with blocking functionality. These new
kinds of threads can be activated by software events and
hardware events, they can have run-to-completion or blocking
semantics, and they run in a single priority space (see Line
6 in Table I). We argue that this new thread abstraction
combines the best properties of threads—blocking flexibility—
and traditional ISRs—low execution latency. Our proposed
thread model is flexible since it allows those control flows
to block that need to block, and it is fast since it relies
on commodity interrupt hardware to perform scheduling and
dispatching in hardware. Thus, in the SLEEPY SLOTH kernel2

that we have implemented as an extension of the original
SLOTH kernel, we have removed the artificial distinction be-
tween threads and ISRs: Threads can be interrupt handlers and
interrupt handlers can be threads. SLEEPY SLOTH implements
the widely used OSEK operating system standard [18], and
it outperforms a leading commercial implementation of that
standard by a factor of 1.3 to 19.0.

This paper provides the following contributions:
• We present a new generalized thread abstraction and

discuss the challenges in implementing it to provide
blocking flexibility while being scheduled and dispatched
efficiently using interrupt hardware (see Section III).

• We present our SLEEPY SLOTH kernel design that tackles
these challenges by providing a tailored task prologue and
a static analysis engine (see Sections IV and V).

• We evaluate our SLEEPY SLOTH prototype on the Infi-
neon TriCore microcontroller, showing that it provides the
extra blocking flexibility without harming performance
and latency for tasks that do not need it (see Section VI).

• We discuss the necessity for different types of control
flows in operating systems and the general applicability
of the hardware-centric SLEEPY SLOTH approach (see
Section VII).

II. SLOTH REVISITED

The original SLOTH kernel described in [5] implements
the BCC1 conformance class of the OSEK operating system
standard [18], which is omnipresent in the automotive industry.

2The name honors the deadly sin and the lazy animal breed named sloth,
which likes its “control flows” to sleep (i.e., to block).
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Fig. 1. Design of a SLOTH system, using interrupt handlers for the
implementation of threads. The interrupt sources have a statically configured
priority and are either triggered synchronously by the CPU through a system-
service call (e.g., Task1), through hardware-periphery IRQs (e.g., ISR2), or
through the timer system after setting a task alarm (e.g., Task4).

In the following section, we briefly describe OSEK’s features
and the corresponding IRQ-based SLOTH design for them;
Figure 1 illustrates this by showing an example SLOTH system.
OSEK systems (and therefore also SLOTH systems) are config-
ured statically, and, thus, all control flows and their priorities
are known at compile time. Note that kernels of that class
target microcontrollers without a memory management unit
and, together with the application, run in a single execution
mode, the supervisor mode; both SLOTH and SLEEPY SLOTH
follow that execution model.

a) Task Management: The main idea behind SLOTH is
to design every task as an interrupt handler. Every task is
assigned an IRQ source with the corresponding priority at
compile time, and the corresponding interrupt handler is set
to be the user task function. Activation of a task by another
control flow is performed by setting the corresponding IRQ re-
quest bit by the kernel software (see Task1 in Figure 1), letting
the IRQ controller’s arbitration unit decide about preemption
depending on the current CPU priority and pending IRQ
priorities. A task terminates by returning from the interrupt
routine, again relying on the hardware to schedule the task
with the next-highest priority.

b) Resource Management: Resources are OSEK’s way
of designating critical sections in applications, which are
synchronized against preemptions by competing tasks using a



stack-based priority ceiling protocol. By acquiring a resource,
a task’s priority is lifted to the ceiling priority of all tasks that
could acquire that resource; SLOTH simply raises the CPU
priority to accomplish this. This way, the dispatching of a task
that competes for the same resource is delayed until after the
critical section is left. Upon release of a resource, the priority is
lowered to the previous level, potentially dispatching delayed
activated tasks.

c) Alarm Management: Alarms are OSEK’s timer ab-
straction and allow activating a task after a specified amount
of time has elapsed. To every task that is configured at compile
time to be activated by an alarm at run time, SLOTH assigns
an IRQ source that is connected to the timer system (see
Task4 in Figure 1). This way, when the timer expires, the
task is automatically scheduled by the hardware by triggering
the corresponding interrupt, dispatching it depending on the
system’s current priority situation.

d) ISR Management: OSEK distinguishes between two
types of interrupt service routines (ISRs): Category-2 ISRs
are allowed to perform system calls and therefore need to
be synchronized with tasks in order not to corrupt kernel
state, whereas the kernel is oblivious of category-1 ISRs,
which are not allowed to invoke the kernel. In SLOTH, there
is no difference in the handling of category-2 ISRs and
tasks; the kernel is oblivious to whether the interrupt request
was triggered by a hardware periphery device (see ISR2 in
Figure 1) or by software (see Task1 in Figure 1).

III. SLEEPY SLOTH REQUIREMENTS

The only class of OSEK system calls that the original
SLOTH kernel does not implement is the one that manages
OSEK events. Events are OSEK’s means for task notification
and, therefore, its means for a task to block (system call
WaitEvent()) and to be unblocked (SetEvent()). OSEK
calls tasks that are allowed to potentially block extended tasks
(which need a full context of their own, including a task stack,
to be continued in their execution), whereas run-to-completion
tasks are called basic tasks (which can share parts of their
contexts, including their stack, since they preempt each other
in a strictly last-in, first-out—that is, stacked—manner).

The overall goal in extending SLOTH to SLEEPY SLOTH is
therefore to provide applications the ability to include extended
blocking tasks while preserving SLOTH’s performance and
latency benefits by having threads run as interrupt handlers.

A. SLEEPY SLOTH Challenges

In the original SLOTH kernel, where only basic run-to-
completion tasks are present, the control flow hierarchy is
strictly stacked and strictly nested, which means that control
flows are only preempted by higher-priority control flows and
returned to after those have run to completion. The SLOTH
execution model corresponds exactly to the one that traditional
ISRs support using multi-level interrupt controllers, plus the
ability to be activated by the operating system (compare Lines
2 and 5 in Table I).

The first and main challenge in SLEEPY SLOTH, however, is
to be able to suspend task execution and resume its execution
later, which interrupt controllers do not support for interrupt
handler execution. This is due to the fact that interrupt han-
dlers are supposed to run to completion transparently to the
interrupted control flow. Thus, SLEEPY SLOTH needs to find
a way to implement both the suspension of a blocked ISR and
the re-activation of an unblocked ISR, saving and restoring its
full context including its stack appropriately.

Second, by nature, interrupts are asynchronous in their
occurrence; that is, no prediction can be made as to where
exactly a control flow yields the CPU when interrupted. Thus,
performing the necessary context and stack switch in the
preempted control flow before dispatching is impossible in
a SLOTH-like system with hardware-triggered preemptions,
since the interrupt scheduler and dispatcher are provided by
the hardware.

The third challenge regards the execution efficiency of the
resulting SLEEPY SLOTH system: The added flexibility for the
application developer should not come at the price of lowered
system performance. Especially the latencies for scheduling
and executing basic run-to-completion tasks should remain
comparable to the original SLOTH kernel.

B. Hardware Environment and Requirements

SLEEPY SLOTH’s requirements on the hardware platform
shall remain the same as stated in [5] for SLOTH; thus, the
approach is applicable to any platform with a modern multi-
level interrupt controller:

1) The platform needs to be able to trigger interrupts from
within software—for instance, by setting a bit in a dedi-
cated register or by offering a special instruction for that
matter. This is needed to implement synchronous task
activation.

2) The number of available interrupt priorities needs to be
at least as high as the number of threads and ISRs in the
SLEEPY SLOTH system, since every thread and ISR is as-
signed a dedicated interrupt source and priority (plus one
dedicated priority for each resource; see Section V-E).
Our two prototypes run on the Infineon TriCore and the
ARM Cortex-M3 platforms, both of which feature 256
interrupt priority levels, enabling SLEEPY SLOTH systems
with about 256 real-time control flows.3 The assignment
of a dedicated priority slot per task does not allow for
multiple tasks per (semantically equal) priority if the
order of activations needs to be preserved.

IV. SLEEPY SLOTH OVERVIEW

In this section, we present the central design ideas in
SLEEPY SLOTH to meet the requirements and challenges dis-
cussed before. A typical control flow in the system illustrates
these ideas, followed by a description of the SLEEPY SLOTH
analysis and generation architecture to provide application-
tailored context switching.

3For the rest of this paper, we assume higher priority levels to be assigned
to higher priority numbers (as is the case on the Infineon TriCore platform).
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Fig. 2. Example control flow in a SLEEPY SLOTH system with two basic tasks, BT1 and BT2 (with priorities 1 and 2, respectively), which run to completion
and share a common stack, stk_bt, and one extended task, ET3 (with priority 3), which can block during its execution and therefore has a stack of its own,
stk_et3. The figure does not reflect timing proportions, as the task prologues are usually very short compared to the task functions themselves.

A. Central Design Ideas

In order to meet the requirements and tackle the challenges
stated before, SLEEPY SLOTH is based on three central design
ideas.

1) The Task Prologue: SLEEPY SLOTH provides support
for blocking tasks by prepending a task prologue to every
task function. This prologue is executed whenever a task is
dispatched by the interrupt hardware, both when the task is
about to run for the first time and when its execution is
resumed after being blocked or preempted. The task prologue
is the single point to decide whether to save the stack of the
interrupted task and whether to restore or initialize the stack
of the dispatched task. Note that parts of the task context
are saved by the hardware automatically upon dispatching an
interrupt handler. The prologue concept is the key enabler
for interrupt re-activation/resumption, and it addresses the
challenge that IRQs occur asynchronously by performing the
stack switch (if necessary) in the newly dispatched successor
control flow.

2) Threads as ISRs: To provide a performance comparable
to SLOTH, SLEEPY SLOTH also relies on the hardware to
perform as much of the work as possible for it. This mainly
entails the kernel relying on the interrupt system to do the
scheduling and dispatching work for it by having all threads
run as ISRs with appropriate priorities. Thus, SLEEPY SLOTH
has a task run as an ISR whenever possible, and only turns
it into a full thread (with a dedicated stack) if the application
semantics needs it (in order to be able to block).

3) Static Analysis and System Generation: To achieve its
goal to enable efficient execution for basic non-blocking tasks,
SLEEPY SLOTH makes use of static application knowledge
available at compile time. By statically analyzing the control
flow configuration of the application, the SLEEPY SLOTH
toolchain can infer information about which task or ISR
can preempt which other tasks or ISRs at run time. This
information is then used to generate tailored task prologues
that omit unnecessary run time checks for preemption condi-
tions before performing stack switches or not. Thus, SLEEPY
SLOTH evaluates those conditions statically where possible
and dynamically otherwise.

B. SLEEPY SLOTH Example Control Flow

Figure 2 shows an example trace of a SLEEPY SLOTH
application with two basic tasks, BT1 and BT2 (which share
a common stack, stk_bt), and a high-priority extended task,
ET3 (with a stack of its own, stk_et3). Suppose that at some
point, only BT1 is running, which then activates ET3 (t1).
ET3 is immediately dispatched because of its high priority—
prepended by its prologue, which saves BT1’s stack and
initializes ET3’s stack before executing the actual user function
for ET3 (t2).

ET3 then blocks and releases the CPU, giving control back
to BT1 (t3). Its prologue notes that it follows an extended task
(namely ET3, which has previously been running and blocked)
and therefore performs a full context switch by saving ET3’s
stack and loading the common BT stack before resuming
execution (t4). The following activation of BT2 (t5) dispatches
the BT2 prologue, which observes that it has interrupted a
basic task and therefore starts executing the task function at
t6 without having to switch stacks.

BT2 then unblocks ET3, triggering its prologue once again
(t7). At this point, the ET3 prologue saves the basic task stack
and restores its own stack, resuming execution after the point
it had blocked at (t8).

C. SLEEPY SLOTH Architecture

Like OSEK OS, SLEEPY SLOTH is configured completely
statically; that is, all threads and ISRs and their priorities
are known and configured before compile time. Many crucial
parts of the SLEEPY SLOTH system are therefore generated
specifically for an application after being analyzed as depicted
in Figure 3.

As its input, the SLEEPY SLOTH system takes the con-
figuration of the application as specified by the application
programmer. This comprises application objects such as tasks,
interrupt service routines, resources, and alarms, together with
their names, priorities, and other properties such as whether a
task is basic or extended (i.e., it is allowed to block) or which
tasks share a given resource.

1) Analysis: The SLEEPY SLOTH analyzer then performs
several kinds of analyses on that configuration to provide the
subsequent generation step with additional input. First, the
configured application control flows (i.e., tasks, category-1



Static Application Configuration:

Task BT1, basic, prio 1
Task BT2, basic, prio 2
Task ET3, extended, prio 3
Task ET5, extended, prio 5
Resource Res1, shared by BT1 and ET3
Resource Res2, shared by BT2 and ET5

SLEEPY SLOTH Static Analyzer:
• Control flow type analysis
• Control flow interaction analysis
• Priority space analysis
• Mapping logical → physical priorities

SLEEPY SLOTH System Generator:
• Activation code generation
• Prologue generation
• Arbitration timing calculation
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Fig. 3. SLEEPY SLOTH configuration analysis and generation architecture.

ISRs, and category-2 ISRs) are analyzed for their interactions
based on their properties and priorities. Internally, this analysis
step calculates a preemption graph, which encompasses infor-
mation about which control flow can be preempted by which
other control flows and, therefore, which of the preemptions
actually need a stack switch (e.g., a basic task preempting
another basic task does not need one). Second, the priority
space as specified by the application programmer is analyzed,
and the given logical priorities are mapped to physical interrupt
priorities. This step comprises both the compacting of the
logical priority space if the priority configuration as provided
by the application is sparse, and it assigns additional, dedicated
priority slots in between control flow priorities for resources.
This way, a task holding a resource can be unambiguously
identified by its execution priority (see Section V-E).

2) Generation: The actual SLEEPY SLOTH generator then
generates application-specific code for the system. This mainly
entails code for the activation of a task by setting the interrupt
request bit in the appropriately configured IRQ source, and
it entails the prologue code for every application task. This
prologue code includes only those run time checks that can
actually occur in the configured system depending on the
calculated preemption graph. Furthermore, as interrupt arbi-
tration systems bear latencies that the kernel needs to consider
and as those latencies depend on the involved interrupts, the
corresponding timing properties are also calculated in that
module (see Section V-C).

3) Back Ends: The back end parts of the SLEEPY SLOTH
generator finally generate the architecture-specific parts of
the code, which are then compiled with static, non-generated
system code (both architecture-dependent and architecture-
independent) to produce the combined binary of the SLEEPY
SLOTH application and kernel. By producing a single com-

pilation unit using the C preprocessor, the combined appli-
cation and kernel code is subject to comprehensive compiler
optimization, which inlines many of SLEEPY SLOTH’s system
calls due to their brevity.

V. SLEEPY SLOTH IMPLEMENTATION

The following section first details the SLEEPY SLOTH task
prologue and how it interacts with explicit scheduling points
such as task termination and task blocking and unblocking.
Additionally, resources need to be re-designed in SLEEPY
SLOTH, and basic tasks are handled specially to preserve
SLOTH’s performance characteristics for them as far as possi-
ble.

Note that all additional system services and the task pro-
logues in SLEEPY SLOTH as well as SLOTH’s original system
calls have a statically bounded worst-case execution time for
real-time operation.

A. Task Prologue

Whenever the hardware dispatches an interrupt handler that
is assigned to an extended task, the task prologue, which is at
the core of the SLEEPY SLOTH design (see also Section IV-A)
takes action as outlined in Figure 4, with IRQs disabled by
the hardware at that point. Depending on the actual task, some
of the condition checks and steps are omitted by SLEEPY
SLOTH’s static analyzer for situations that can never occur
at run time (see also Section IV-C).

First, the prologue saves the extended context of the in-
terrupted task (i.e., those registers that have not been saved
by the hardware when dispatching the interrupt handler4) to
the corresponding task stack, whose stack pointer in turn is
saved to a kernel context array (Step 1 in Figure 4). Next,
the prologue checks whether the interrupted task was either
preempted or blocked, or whether it terminated (2). If it did not
terminate, the prologue re-activates the task to be continued
later by triggering the task’s interrupt source at the priority it
was running at (2a). This is what ET3’s prologue does at t1
and t7 in the example control flow in Figure 2. Note that the
interrupted task’s priority might have been raised at the time of
preemption due to the possession of a resource in combination
with the stack-based priority ceiling protocol; in that case,
the continuation of the task needs to be treated specially (see
Section V-E). The check for that condition itself is done via a
kernel-maintained bit array (hasSeenCPU[]). After that, the
kernel variable holding the current task is set to the dispatched
task ID, which corresponds to the current IRQ number (3).

If the dispatched task has run before (checked by comparing
its hasSeenCPU property; Step 4 in Figure 4), its context
is restored from the kernel context array (entailing its stack
and registers; 5a), IRQs are enabled (6a), and execution of
the task is continued by returning via the return address in
the saved context (7a). If it has not run before, its context
is initialized (entailing re-setting its stack pointer; 5b) and
its hasSeenCPU property is set to true to be considered by

4Note that, with appropriate compiler support, the prologue can save only
those registers that are actually used by the dispatched task.
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Fig. 4. State diagram of the SLEEPY SLOTH task prologue for extended tasks
in its maximum version. Depending on the results of SLEEPY SLOTH’s static
analysis, each task prologue is tailored to the functionality actually needed at
run time.

further preemptions by other tasks (6b). Eventually, the task
prologue enables IRQs (7b) and jumps to the actual user task
function to start executing user code (7b).

B. Task Termination

Task termination in SLEEPY SLOTH differs from the way
it works in the original SLOTH since a stack switch might be
needed after termination—for instance, if another task (with
the next-highest priority) was unblocked and needs to be
continued in its execution after termination of the current task.
Again, SLEEPY SLOTH solely relies on the prologue of the
next task to determine if a context switch is needed or not.
The next task is scheduled and dispatched by the hardware by
letting the terminating task set the CPU priority to zero. The
interrupt system then determines the next-highest priority task
that is ready to run. Before that, the terminating task indicates
to the next prologue that it has terminated by re-setting its
hasSeenCPU flag to false. This way, the interrupt source
of the terminating task will not be re-triggered for continued
execution (see Steps 2 and 2a in Figure 4).

C. Task Blocking

The main additional system call that SLEEPY SLOTH pro-
vides over the original SLOTH kernel is WaitEvent(). The
implementation compares the event mask of the current task
to the event mask to be waited for, and, if they do not match,
blocks the task. This is done by disabling the task’s IRQ
source; this way, it will not be considered in the interrupt
arbitration, which determines the highest-priority interrupt to
be handled. After that, the CPU is yielded by setting the
CPU priority to zero (much in the same way that a task
terminates; see also Section V-B) and letting pending interrupts
(corresponding to tasks that are ready to run) trigger (see

also t3 in the example control flow in Figure 2). The whole
blocking mechanism is synchronized against preemption by
other tasks and interrupt handlers by disabling all IRQs at the
beginning and re-enabling them at the end:

void WaitEvent(EventMaskType mask)
{
disableIRQs();
if ((eventMask[currentTask] & mask) == 0) {
/* none of the events has already been set */
eventsWaitingFor[currentTask] = mask;
/* block task */
disableIRQSource(currentTask);
setCPUPrio(0);
waitForArbitration();

}
enableIRQs(); /* point of preemption */

}

Note that, like when activating a task in the original SLOTH
kernel [5], modifying the hardware interrupt priority state of
current and pending priorities—in this case, disabling an IRQ
source and setting the CPU priority to zero—might require
synchronization with the interrupt arbitration system. This is
due to latencies during the arbitration in the interrupt system;
for instance, for the TriCore microcontroller platform, those
latencies are defined by Infineon in an application note [6].
The maximum number of clock cycles that the arbitration
process takes depends on several system properties like the
system frequency and the number of involved IRQ sources—
and, therefore, the number of SLEEPY SLOTH tasks in the
system. Thus, this number can be calculated statically by the
static analyzer (see Section IV-C) and is inserted in the form
of nop instructions in waitForArbitration() before
enabling the IRQs again5. This way, SLEEPY SLOTH ensures
that the defined point for preemption after blocking the current
task will always be the point after the IRQ enable instruction,
independent of the current state and latency of the interrupt
arbitration system. Note that this arbitration delay makes up
for most of the hardware-induced costs, which are significantly
lower than any software-induced costs (see also evaluation in
Section VI).

D. Task Unblocking

In OSEK, tasks are unblocked by setting one of the events
that the task has been waiting for. SLEEPY SLOTH’s system
call SetEvent() therefore first checks whether that condi-
tion is met, and then it unblocks the task by re-enabling its
IRQ source and triggering its IRQ (see also t7 in the example
control flow in Figure 2). This makes the interrupt controller
consider the task in its priority arbitration mechanism and
schedule the task according to the system’s priority state:

void SetEvent(TaskType id, EventMaskType mask)
{
eventMask[id] |= mask;
if ((eventMask[id] & eventsWaitingFor[id]) != 0) {
/* at least one of the events that

5Before waiting for the arbitration by executing nop instructions, the
TriCore SLEEPY SLOTH implementation also reads back the interrupt register
to synchronize hardware and software as demanded by Infineon’s specifica-
tion [6].



* the task has been waiting for is set */
eventsWaitingFor[id] = 0;
/* unblock task */
disableIRQs();
enableIRQSource(id);
waitForArbitration();
enableIRQs(); /* point of preemption */

}
}

As elaborated in the description of the task blocking mecha-
nism (see Section V-C), due to the synchronization with the
interrupt arbitration system, the defined preemption point will
be the enable-IRQ instruction at the end of the system call.

E. Resources in SLEEPY SLOTH

OSEK resources are used to synchronize accesses of appli-
cations to critical sections by raising their priorities according
to a stack-based priority ceiling protocol. In SLEEPY SLOTH,
these resources require special handling. Consider a task that,
having acquired a resource, is preempted by a higher-priority
extended task, which therefore performs a stack and context
switch (see example control flow in Figure 5). When the
preempted task continues execution, it has to do so at the
raised priority of the resource (td in Figure 5). In the original
SLOTH kernel, a resource’s ceiling priority was set to the
highest priority of all tasks that can acquire that resource. In
order for SLEEPY SLOTH to be able to distinguish between
an activation of that highest-priority task and a re-activation
of a task that had acquired that resource, the resource is given
its own dedicated priority, one higher than the ceiling. The
resource is therefore also assigned a dedicated IRQ source.

The resource’s IRQ source is only triggered after a task
that had acquired the resource is preempted by a higher-
priority task (tb in Figure 5). The preempting task’s prologue
will re-trigger the resource IRQ (see Step 2a in Figure 4
and tb in Figure 5). This ensures that the dedicated resource
IRQ handler will be dispatched once the CPU priority is
lowered again—when the higher-priority task terminates or
blocks (td in Figure 5). The resource IRQ handler then loads
a reference to the preempted task (recorded by the original
GetResource() system call) and restores its context. The
execution priority is left unchanged, as it is already at the
resource priority (te in Figure 5).

F. Basic Tasks in SLEEPY SLOTH

The main goal in designing SLEEPY SLOTH is to support
blocking extended tasks while preserving SLOTH’s advantages
and performance as far as possible for non-blocking basic
tasks. Since basic tasks run to completion in a strictly priority-
ordered stacked way, SLEEPY SLOTH, just like SLOTH, lets
all basic tasks run on a single stack. This makes context
switches between basic tasks—both on preemption and on
termination—extremely lightweight and fast, since the hard-
ware automatically saves and restores part of the register set
upon interrupt entry and return and no additional stack switch
is needed.

In SLEEPY SLOTH, however, additional overhead is incurred
to determine whether a stack switch is needed—that is,

whether either the interrupted or the newly dispatched task
or both are extended tasks. This property is configured by
the application programmer at compile time and stored in
a bit field for fast access. Apart from that, during times in
the application when only basic tasks are scheduled and dis-
patched, the overhead incurred by the SLEEPY SLOTH kernel
is minimal and comparable to the one incurred by SLOTH (see
also the empty prologue at t5 in the example control flow in
Figure 2 and the evaluation in Section VI). Additionally, if the
static configuration permits, run time checks can be omitted
altogether in the tailored basic task prologues, further reducing
overhead (see Section IV-C).

VI. EVALUATION

We have evaluated our SLEEPY SLOTH reference imple-
mentation on the Infineon TriCore platform, a 32-bit micro-
controller widely used in the automotive industry, featuring a
RISC load/store architecture and a Harvard memory model.
The interrupt system has 256 priority levels and the TC1796
chip that we use has about as many interrupt sources with
memory-mapped registers, enabling SLEEPY SLOTH to modify
their enable and pending bits for its purpose. A specialty of
the TriCore platform is its separation of the data stack from
the call stack, which is managed in separate so-called context
save areas; SLEEPY SLOTH therefore has to save and restore
both stacks when switching between two extended tasks. We
clocked the chip at 50 MHz (clock cycle of 20 ns), although
we state our measurements in numbers of clock cycles to
be frequency-independent. All measurements were performed
using only zero-wait-state internal memories (both code and
data), so caching effects did not apply.

To assess the performance gain achieved by implementing
thread scheduling using interrupt hardware, we have per-
formed several microbenchmarks comparing SLEEPY SLOTH
to a leading commercial OSEK implementation. We set up
several test applications for that purpose and compiled them
unaltered for both SLEEPY SLOTH and the commercial OSEK,
measuring only the latencies of the involved system calls. All
numbers were obtained using a Lauterbach hardware trace unit
and averaged over at least 10,000 samples.

A. Basic Task System

In prior work [5], we published the execution time numbers
of the basic SLOTH kernel for seven microbenchmarks related
to task switching. Table II reproduces those numbers and
additionally shows the measurements for the SLEEPY SLOTH
kernel and the commercial OSEK implementation.

For one, the results show that the numbers for SLOTH and
SLEEPY SLOTH are almost identical. This is because SLEEPY
SLOTH can be entirely tailored to the functionality that the
application actually needs; thus, in a setting with only basic
tasks, SLEEPY SLOTH will behave identically to SLOTH. The
occasional and small deviations are due to bug fixes since the
old measurements were performed.

On the other hand, both SLEEPY SLOTH and SLOTH out-
perform the commercial OSEK implementation, which uses a
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Fig. 5. Example control flow with an OSEK resource in a SLEEPY SLOTH system with one basic task BT1 (with priority 1) and one extended task ET5 (with
priority 5). BT1 accesses a resource it shares with extended task ET3 (with priority 3); in SLEEPY SLOTH, the resource is therefore assigned the dedicated
priority slot 4 due to the stack-based priority ceiling protocol.

Test Case SLOTH [5] SLEEPY
SLOTH

OSEK

A1) Task Activation w/o Dispatch 34 38 75
A2) Task Activation w/ Dispatch 60 60 273
A3) Termination w/ Dispatch 14 14 266
A4) Chain w/ Dispatch 67 67 327
A5) Resource Acquisition 19 18 66
A6) Resource Release w/o Dispatch 14 16 128
A7) Resource Release w/ Dispatch 36 38 280

TABLE II
EVALUATION OF BASIC TASK SWITCHING MICROBENCHMARKS WITHOUT

STACK SWITCHES (EXECUTION TIME IN CLOCK CYCLES), COMPARING THE
ORIGINAL SLOTH KERNEL TO SLEEPY SLOTH AND A COMMERCIAL OSEK

IMPLEMENTATION.

Test Case SLEEPY
SLOTH

OSEK Speed-
Up

B1) Extended Task Activation w/ Dispatch 121 286 2.4
B2) Blocking w/ Dispatch 143 224 1.6
B3) Unblocking w/ Dispatch 120 205 1.7
B4) Event Mask Clearing 6 32 5.3
B5) Extended Task Termination w/ Dispatch 82 275 3.4
B6) Extended Task Chain w/ Dispatch 113 392 3.5

TABLE III
EVALUATION OF EXTENDED TASK SWITCHING MICROBENCHMARKS WITH
STACK SWITCHES (EXECUTION TIME IN CLOCK CYCLES), COMPARING THE

SLEEPY SLOTH KERNEL TO A COMMERCIAL OSEK IMPLEMENTATION.

software scheduler and dispatcher for operation. The achieved
speed-up is between 2.0 and 19, with higher speed-ups for
those test cases that not only involve a scheduling decision
but also dispatching a new task.

B. Extended Task System

To assess the performance of SLEEPY SLOTH’s extended
task features, we configured an application that consists only
of extended tasks. Hence, every task switch needs to perform
a stack switch; the microbenchmark numbers are shown in
Table III.

Although SLEEPY SLOTH uses the interrupt controller,
whose run-to-completion model does not perfectly fit SLEEPY

SLOTH’s blocking threads, it still outperforms the commercial
OSEK implementation for all test cases. SLEEPY SLOTH’s ex-
tended task switches are considerably slower (82–143 cycles)
than its basic task switches (14–67 cycles) due to the stack
switches and involved decisions, but it is still considerably
faster than the commercial OSEK, which has a software
scheduler (205–392 cycles, resulting in a speed-up of 1.6 to
3.5).

C. Mixed Task System

One of SLEEPY SLOTH’s original goals and challenges
was to be able to provide the flexibility of blocking tasks
without influencing the task switch performance for basic tasks
too much (see Section III). On application granularity, we
have shown this by measuring a purely basic task system on
SLEEPY SLOTH (see Section VI-A). To evaluate this property
on task granularity, we configured a single application with
two basic tasks and two extended tasks, and we measured
different types of preemptions between those tasks (see Ta-
ble IV).

As expected after analyzing the results from the basic-
only and extended-only benchmarks, SLEEPY SLOTH is also
faster than the software-based commercial OSEK in the mixed
task case (speed-up between 1.3 and 9.7). The numbers for
transitions between two basic tasks are on SLEEPY SLOTH’s
low end (79, 29, and 98 cycles for C1, C5, and C8) and
compare to the corresponding benchmarks in the basic-only
version (60, 14, and 67 cycles for A2, A3, and A4). Thus, in
a mixed task system, basic task scheduling in SLEEPY SLOTH
is burdened by an overhead of 15 to 31 cycles, added to an
already low base overhead of 14 to 67 cycles.

D. Evaluation Summary

The main goals in the design and implementation of
SLEEPY SLOTH were to provide the flexibility of blocking
tasks while relying on hardware as much as possible in order to
provide good performance for extended tasks without harming
performance for basic task scheduling (see Section III). The



Test Case Task Type Transition Stack Switch SLEEPY
SLOTH

OSEK Speed-
Up

C1) Task Activation Basic → Basic w/o Stack Switch 79 281 3.6
C2) Task Activation Basic → Extended w/ Stack Switch 116 286 2.5
C3) Blocking Extended → Basic w/ Stack Switch 168 216 1.3
C4) Unblocking Basic → Extended w/ Stack Switch 118 205 1.7
C5) Task Termination Basic → Basic w/o Stack Switch 29 280 9.7
C6) Task Termination Extended → Extended w/ Stack Switch 94 344 3.7
C7) Task Termination Extended → Basic w/ Stack Switch 86 282 3.3
C8) Task Chain Basic → Basic w/o Stack Switch 98 393 4.0

TABLE IV
EVALUATION OF MIXED—THAT IS, BOTH EXTENDED AND BASIC—TASK SWITCHING MICROBENCHMARKS (EXECUTION TIME IN CLOCK CYCLES),

COMPARING THE SLEEPY SLOTH KERNEL TO A COMMERCIAL OSEK IMPLEMENTATION.

execution time measurements on the TriCore platform show
that the SLEEPY SLOTH implementation is able to meet these
goals.

First, no performance penalty at all is incurred for systems
that only need basic run-to-completion tasks. In contrast, the
software-based commercial implementation shows about the
same overhead for switches between basic tasks as for switches
between extended tasks.

Second, although the SLEEPY SLOTH implementation is
not as simple as is SLOTH’s, extended task scheduling is not
slower than in the commercial implementation with a software
scheduler. In fact, SLEEPY SLOTH is able to outperform the
commercial OSEK by a factor of 1.6 to 3.5.

Third, in a mixed task system, the task switch overhead
scales with the demand of the involved tasks. Task switches
between basic tasks in a mixed SLEEPY SLOTH system are
cheaper than task switches between extended tasks, which
need additional stack switches.

The real-time application benefits from SLEEPY SLOTH by
suffering lower system call latencies compared to a software
scheduler kernel, positively affecting the response times it
asserts itself to the user of the system. The actual per-
formance gain depends on the actual application and the
ratio of executed application code to executed system code.
Additionally, since all tasks and ISRs run in the same priority
space, the analysis of the system’s real-time properties is
facilitated (see also discussion in Section VII-A). Note that the
numbers discussed in this section include all hardware-related
preemption costs such as waiting for the bus arbitration (see
also Section V-C); nevertheless, the SLEEPY SLOTH system
still outperforms the software-based commercial kernel.

VII. DISCUSSION

SLEEPY SLOTH combines the flexibility of an off-the-shelf
embedded kernel with the efficiency of a purely interrupt-
driven system. In this section, we discuss the necessity for
different control flow types in embedded systems, and we dis-
cuss the general applicability of the SLEEPY SLOTH approach.

A. Control Flows in Embedded Systems

As outlined in the introduction and Table I, current operating
systems distinguish between two kinds of control flows. If
blocking ability is needed, the control flow must be represented

by a thread, if it requires asynchronous activation by a
hardware device, it has to be an ISR. SLEEPY SLOTH threads,
however, provide both of those properties in one generalized
abstraction, leading to several advantages for the real-time
application.

For one, SLEEPY SLOTH threads can interact and synchro-
nize freely using common synchronization and notification
mechanisms, such as OSEK resources and events. In tradi-
tional systems, communication between threads and ISRs and
synchronization of threads and ISRs is complicated or even
impossible to achieve.

Additionally, since SLEEPY SLOTH threads run in one
common priority space—the interrupt priority space—, the
conditions for rate-monotonic priority inversion [3] are elimi-
nated. In traditional kernels, it is impossible to have a thread
run at a higher priority than an ISR (since interrupt priorities
are implicitly higher than thread priorities), even though the
application might demand it. SLEEPY SLOTH enables the
application to freely distribute priorities among its control
flows depending solely on its semantic requirements.

B. General Applicability of the Approach

The nature of both SLOTH and SLEEPY SLOTH implies
that the actual implementation on a platform with a specific
interrupt controller is highly hardware-dependent, since the
kernels rely on efficient hardware mechanisms to perform the
scheduling work for them. However, the matter of the fact
is that the actual kernel code is very small and has a clear
abstraction boundary that needs to be mapped to the hardware
platform, resulting in a manageable porting effort. The fact
that a kernel can reach new levels of efficiency by tailoring
its implementation to the target hardware has been exploited
many times before—for instance, when making microkernel
inter-process communication more efficient [10].

Our SLEEPY SLOTH prototype implements the OSEK op-
erating system specification to be able to compare it to other
implementations without adapting the benchmark applications
(see also evaluation in Section VI). The approach to implement
blocking threads as interrupt handlers with a tailored prologue,
however, is applicable to any event-driven real-time operating
system with static priorities. Dynamic-priority systems, on the
other hand, which need to re-prioritize threads at run time,
are not worthwhile implementing using the SLEEPY SLOTH



approach, since dynamic re-configuration of interrupt sources
and preempted interrupt handlers is usually very costly. Gen-
erally speaking, SLEEPY SLOTH is suitable to implement the
most well-known fixed-priority scheduling algorithms such as
rate-monotonic [12] and deadline-monotonic scheduling [13].
Advanced scheduling mechanisms such as the general priority
ceiling protocol, the priority inheritance protocol, and aperi-
odic servers can still be implemented in SLEEPY SLOTH, since
they only require occasional re-prioritization of control flows
by re-configuring the corresponding interrupt sources.

Despite running all threads as ISRs, exception traps can
also be accommodated in SLEEPY SLOTH. Traps cannot be
masked and do not interfere with the interrupt priorities that
SLEEPY SLOTH uses for its purposes. Thus, they can simply
be executed in the context of the currently running thread or
ISR; the trap return will then restore the context appropriately.
Note that the SLEEPY SLOTH system calls themselves are not
implemented as traps but as simple functions that can even be
inlined by the compiler.

VIII. RELATED WORK

The approach to having basic run-to-completion tasks run as
ISRs and to mapping task activations to IRQ source triggering
was new when we first published SLOTH [5]. SLEEPY SLOTH
extends this work by providing this functionality to more
complex blocking tasks. We are not aware of any work
on a comparable embedded kernel that runs on commodity
hardware; here, we list work on kernels with scheduling
enhanced by customized hardware and work on the thread–
ISR boundary.

Control flow scheduling and dispatching is the core respon-
sibility of any operating system kernel and thus important
to be efficient. That is why ways to move software task
scheduling into hardware have been researched, although all of
the approaches—like Atalanta [23], cs2 [15], HW-RTOS [2],
FASTCHART [11], and Silicon TRON [16]—use customized
hardware synthesized on an FPGA or a similar component
to achieve this. This allows implementing arbitrary control
flow semantics, including blocking threads. The Responsive
Multithreaded Processor (RMT) [25], [24] is customized to
integrate real-time functions into the processing unit, including
very fast task switching by providing eight hardware contexts
plus 32 contexts in an on-chip context cache [17]. SLEEPY
SLOTH, on the other hand, is designed to run on commodity
off-the-shelf hardware with any modern interrupt controller to
achieve its boost in performance. Note that some architectures
provide hardware support for fast context switching; however,
that support only targets fast dispatching but not scheduling
of tasks as the SLEEPY SLOTH approach does.

Overcoming the strict distinction between OS-operated
threads and hardware-operated interrupt handlers has also been
the work of Kleiman et al. [8]. In their work on the Solaris
kernel for desktops and servers, they investigated ways to
enhance interrupt service routines to become threads under the
control of the OS kernel—in order for them to be able to block.
Lohmann et al. [14] showed that this concept is also feasible

for embedded system kernels and made this kind of interrupt
synchronization a configurable property of their CiAO system.
Before those two systems, early microkernels and microkernel-
like systems (including AX [22], L3 [9], and L4 [10]) started
implementing interrupt handlers as user threads, having very
small stubs send the corresponding threads an IPC message
once an interrupt is triggered; this way, regular threads and ISR
threads also run in a single priority space. However, during
the execution of the interrupt handler stubs, those systems
still exhibit rate-monotonic priority inversion by potentially
delaying high-priority threads. Intel’s early real-time operating
systems, such as iRMX [20] and iDCX 51 [7], also included
concepts of special interrupt tasks, which are scheduled and
dispatched as high-priority OS tasks in the OS priority space.
However, all of the discussed kernels merely upgrade their
interrupt handlers to full-blown threads (which implies the
overhead for software-managed threads), whereas SLEEPY
SLOTH goes the other way and makes threads run as ISRs,
resulting in a significant performance gain.

IX. CONCLUSIONS

We have presented our SLEEPY SLOTH operating system
design, which exploits standard interrupt hardware to imple-
ment an efficient generalized thread abstraction that can be
triggered by hardware and software events. SLEEPY SLOTH
control flows are scheduled and dispatched with low latency
by the interrupt controller; additionally, they can be blocked
and resumed in their execution like threads. They share a
single priority space, facilitating arbitrary interactions between
hardware- and software-induced control flows and avoiding the
real-time problem of rate-monotonic priority inversion.

As SLEEPY SLOTH uses the hardware interrupt system
instead of software-implemented routines for scheduling and
dispatching, the resulting performance boost is convincing.
We have evaluated our approach by implementing the con-
formance classes BCC1 and ECC1 of the OSEK OS standard,
which is omnipresent in the automotive industry. With respect
to event latencies, SLEEPY SLOTH outperforms a leading
commercial implementation of this standard by a factor of
1.3 to 19.

The SLEEPY SLOTH approach abolishes the artificial dis-
tinction between threads and ISRs: threads can be interrupt
handlers and interrupt handlers can be threads. Developers
of event-driven systems can forget about the differences,
choosing priorities and semantics freely based solely on the
requirements of the application.

X. FUTURE WORK

Having designed and implemented a generalized thread
abstraction that is scheduled and dispatched by the interrupt
controller, we aim at accommodating future multi-core plat-
forms as well. Since SLEEPY SLOTH is already running on
an ARM Cortex-M3 microcontroller, we want to investigate
ways how to run it on the open source Pandaboard [19],
which features a dual-core ARM Cortex-A9 MPCore. Both
the M3 and the A9 have the same interrupt controller, ARM’s



nested vectored interrupt controller (NVIC), which fulfills the
requirements as stated in Section III-B. Since SLEEPY SLOTH
is based on the OSEK OS standard [18], we will evaluate
its successor standard, AUTOSAR OS, and in particular its
multi-core specification [1] to be able to present a sophisticated
multi-core SLOTH design.
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Schröder-Preikschat. Interrupt synchronization in the CiAO operating
system. In Proceedings of the 6th AOSD Workshop on Aspects,
Components, and Patterns for Infrastructure Software (AOSD-ACP4IS
’07), Vancouver, BC, Canada, March 2007.

[15] Andrew Morton and Wayne M. Loucks. A hardware/software kernel for
system on chip designs. In Proceedings of the 2004 ACM Symposium on
Applied Computing (SAC ’04), pages 869–875, Nicosia, Cyprus, March
2004.

[16] Takumi Nakano, Andy Utama, Mitsuyoshi Itabashi, Akichika Shiomi,
and Masaharu Imai. Hardware implementation of a real-time operat-
ing system. In Proceedings of the 12th TRON Project International
Symposium (TRON ’95), pages 34–42, Tokyo, Japan, November 1995.

[17] Amos R. Omondi and Michael Horne. Performance of a context cache
for a multithreaded pipeline. Journal of Systems Architecture, 45(4):305–
322, 1998.

[18] OSEK/VDX Group. Operating system specification 2.2.3. Technical
report, OSEK/VDX Group, February 2005. Available at http://portal.
osek-vdx.org/files/pdf/specs/os223.pdf.

[19] Pandaboard homepage. http://pandaboard.org/.
[20] RadiSys Corporation, 5445 NE Dawson Creek Drive, Hillsboro, OR

97124, USA. Introducing the iRMX Operating Systems, December 1999.
Available at http://www.tenasys.com/support/files/IntroducingiRMX.pdf.

[21] Fabian Scheler, Wanja Hofer, Benjamin Oechslein, Rudi Pfister, Wolf-
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