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ABSTRACT

In recent years, there has been a rapid evolution of
energy-aware computing systems (e.g., mobile de-
vices, wireless sensor nodes), as still rising system
complexity and increasing user demands make en-
ergy a permanently scarce resource. While static
and dynamic optimizations for energy-aware execu-
tion have been massively explored, writing energy-
efficient programs in the first place has only received
limited attention.

This paper proposes SEEP, a framework which
exploits symbolic execution and platform-specific
energy profiles to provide the basis for energy-aware
programming. More specifically, the framework pro-
vides developers with information about the energy
demand of their code at hand, even for the invoca-
tion of library functions and in settings with mul-
tiple possibly strongly heterogeneous target plat-
forms. This equips developers with the necessary
knowledge to take energy demand into account dur-
ing the task of writing programs.

1. INTRODUCTION

Energy efficiency is an essential goal of today’s
mobile and wireless systems and demands for a tight
interaction between the system software (i.e., the
operating system) and the hardware. In order to
achieve this goal, various distinct approaches such
as dynamic voltage and frequency scaling [1, [2],
sleep states |3l 4], and resource accounting [5] (6]
have been proposed. In contrast to these runtime-
driven approaches, energy-aware compilers assist in
optimizing code prior to execution. In particular,
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loop optimizations |7}, |8] and architecture-specific
instruction set extensions [9, |10] have proven to be
effective to save energy. In addition to these static
and dynamic optimizations for energy-aware execu-
tion there is the option of energy-aware program-
ming that aids developers to implement energy-effi-
cient programs in the first place. Cooperative 1/0,
for example, enables developers to specify deadlines
for I/O operations in order to permit energy-efficient
data access [11]. More generic are recent proposals
for programming languages that feature approxima-
tion techniques to cut down computational costs,
thereby leading to energy savings |12} |13].

In accordance with these recent works we see great
potential in energy-aware programming. At present,
however, writing energy-efficient programs is still
complicated as developers are not aware of the en-
ergy demand of their code at hand. To estimate an
application’s energy costs usually requires running
its code on a target platform while measuring the as-
sociated power consumption. However, a single iter-
ation is inconclusive as a specific control flow graph
of the application is selected which might have ei-
ther a high or low energy demand compared to the
average execution costs. Accordingly, multiple test
runs with diverse input sets are required. At the
same time, results of such measurement series are
prone to have a high amount of jitter as unsettled
background activities in user and kernel space have
non-deterministic impact on the results.

While it is already difficult and time consuming
to determine the energy demand for a single plat-
form, the ever-increasing number of different hard-
ware platformsE] and the demand to implement ap-
plications for a multitude of them renders it almost
impossible to carry out measurements for all plat-
forms. Albeit developers might know the measured
energy footprint for a given program on one plat-
form, this knowledge often cannot be transferred

!The Linux kernel at present counts support for over 110
different platforms, for example.
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to another even if the other platform is similar,
as the availability of hardware function units (e.g.,
floating-point unit) can differ among them.

However, knowing the code’s impact on energy
costs would allow developers to refactor application
logic to eliminate energy hotspots in the first place,
for example, by disabling features when energy is
scarce, simplifying code, or utilizing new energy-
saving programming techniques [12} [13].

In sum, we consider high-level decisions in appli-
cation design to be the crucial factor towards the en-
ergy efficiency of software beyond its current level.

In this paper we present SEEP, a three-tier frame-
work, which uses symbolic execution and platform-
specific energy profiles to aid energy-aware program-
ming. Our framework introduces a tool-based feed-
back loop that equips developers with the energy
demand of their program while developing. This
is achieved by analyzing source code at creation
time and providing consumption profiles for arbi-
trary pieces of code (e.g., libraries) that have been
determined offline. To support heterogeneity at the
platform level after runtime analysis, energy cost
estimates are created using platform-specific energy
profiles. The combined results are then provided to
the developer enabling energy-aware programming.

Specifically, the key contributions presented in
this paper are threefold:

o We present SEEP, a framework to enable energy-
aware programming. By exploiting symbolic execu-
tion it provides developers with an early and mean-
ingful insight into the expected energy consumption
of their program code.

e Energy cost estimates provided by SEEP cover
diverse, heterogeneous target platforms, including
those unavailable to developers.

e Finally, we designed an easy to use hardware
which allows analog energy measurements. It is pre-
sented in the evaluation section.

The paper is organized as follows. In Section
we present the architecture of the SEEP framework.
Section [3] discusses the implementation of our pro-
totype, Section [ outlines results from our evalua-
tion, and Section [5| concludes and discusses future
directions of our research.

2. ARCHITECTURE

The SEEP framework is composed of three main
components (see Figure that are consecutively
executed: a path explorer, a path-specific complex-
ity explorer and a platform energy profile merger.

The path explorer analyzes program code by ap-
plying symbolic execution techniques. It extracts all
possible code paths and their corresponding path
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Figure 1: The SEEP architecture

constraints (i.e., branch conditions). This allows
us to further explore the code’s behavior at run-
time as a next step. The path-specific complex-
ity explorer automatically generates and executes
specially crafted binaries originating from the de-
veloper’s program code, augmented with predefined
inputs as received by the path explorer component.
To quantify the complexity of the code under inves-
tigation, we then create execution traces. During
this tracing period SEEP increments a block counter
for every basic block (branchless sequence of code)
each time it is executed. The final result of the
block counters unveil how often each basic block has
been executed during the tracing period. Finally,
the profile merger component combines platform-
specific energy profiles with the block counters of
the tracing period to produce energy consumption
estimates for the analyzed code. Thereby, an esti-
mate quantifies the energy demand at function level
and provides the same interface as the characterized
function. For concrete input parameters it therefore
estimates the expected energy demand.

To minimize the analysis time of the code under
development, SEEP supports two modes of opera-
tion: First, our framework analyzes the developer’s
program code and explores its complexity and run-
time behavior in terms of energy demand. Second,
SEEP estimates the expected energy consumption
of library calls by means of energy consumption esti-
mates. The latter have previously been determined
and are provided by the corresponding libraries.

3. IMPLEMENTATION

In this section, we discuss the implementation of
SEEP. Our current prototype utilizes KLEE [14] as
a basis for supporting symbolic execution. All tasks
of the SEEP framework but the creation of energy
profiles are entirely architecture independent and
platform independent. Therefore, they can be per-
formed on an arbitrary system different from the
target platforms, which is convenient as the LLVM
framework required by KLEE might not be avail-
able for some of them.



3.1 Code Path Exploration

With SEEP we exploit symbolic execution in two
distinct ways. First, executing code symbolically
enables us to extract all possible code paths of the
application under test (see Figure ) As sym-
bolic execution is usually brought into action for un-
attended discovery of defects in program code, test-
ing frameworks based on symbolic execution pro-
vide high code coverage by default.

Second, we extract the associated path constraints
(i.e., branch conditions) which are specific for each
code path. This information allows SEEP to create
various predefined binaries for the extracted code
paths. It is important to note that different bina-
ries of the very same code path can exhibit entirely
different energy costs, depending on the actual val-
ues of their path constraints. That is why SEEP
analyzes multiple different predefined binaries for
each of the extracted code paths.

3.2 Crafting Path Entities

Each code path has specific path constraints de-
fined by a set of parameter values under which it will
be executed. These path constraints in turn are a
composition of individual constraints which poten-
tially have an impact on the energy costs of the
given program code. First, at conditional branches,
a constraint determines which branch of the code
is being taken. Second, path constraints have a
shaping characteristic on the runtime behavior in
terms of energy demand, for example, depending on
whether the constraint in question is used as loop
variable or not. This information is required by
SEEP to further reason about the diverging energy
footprint of two or more predefined binaries of the
same code path.

SEEP crafts predefined binaries for each code path
by exploiting the path constraints. Each predefined
binary corresponds to exactly one code path and
one predefined set of constraints, which are in effect
for the specific code path. These distinct entities are
called path entities. The number of path entities for
each code path is determined by the amount of path
constraints and their parameter range.

By using predefined input data for the path con-
straints which are aligned to their corresponding pa-
rameter range, for example, by using the upper and
lower boundaries, and evenly distributed interme-
diate values, SEEP crafts and analyzes a subset of
significant path entities. Figure 2b shows four dis-
tinct path entities for code path B. The differing
size of the bottommost node denotes different run-
time behavior in terms of energy demand compared
to the other entities of the same code path.
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Figure 2: Code paths and code entities
3.3 Tracing Path Entities

The source code of path entities yet does not yield
any insight regarding the expected energy footprint
of the binary on the target platforms. SEEP ad-
dresses this during a twofold tracing phase, respect-
ing the fact that target platforms indeed are likely
to be heterogeneous (e.g., different instruction sets).

At the beginning of the tracing phase, SEEP exe-
cutes several distinct compilation runs. On the one
hand, SEEP compiles the code of the path entities
for a powerful test system which is used for resource-
intensive execution runs. On the other hand, the
same code is compiled for each architecture of the
target platforms using a cross-compiler. Next, SEEP
generates one runtime execution trace for each path
entity by executing them on the test system.

By means of execution traces SEEP can infer the
runtime behavior on the target platform by exam-
ining how often each basic block was executed. For
this we have applied a similar strategy as described
in |15]. While the structure of the basic blocks is
likely to differ, the number of times each basic block
is being executed is the same across all platforms.
Accordingly, this information can be utilized to de-
termine the energy demand for the target platforms
as detailed in the next section.

3.4 Energy Profile Fusion

For this step SEEP uses an energy profile specific
to each target platform. An energy profile speci-
fies how much energy is being consumed for each
instruction of the instruction set architecture. Such
a profile needs to be created only once per target
platform and can be distributed independently.

As the structure of the basic blocks for the tar-
get architectures are known as a result of the cross-
compilation, each basic block’s energy consumption
can be calculated by adding up the specified energy
value of each instruction of the basic block utilizing
the platform’s energy profile. The expected energy
consumption is calculated by multiplying the block
counters with the energy costs of the correspond-
ing basic block. A path entity’s expected energy
consumption then is obtained by adding up these
interim results. From the calculated energy costs



of the path entities SEEP interpolates the energy
cost for arbitrary path entities (i.e., path entities
not analyzed during the tracing phase). The final
results are either passed to the developer or stored
for future reference (i.e., offline usage).

4. EVALUATION

For carrying out the evaluation, we used two sim-
ilar hardware platforms, which—contrary to their
common characteristics—have differing energy re-
quirements. We have verified our approach with
a test application consisting of three different code
paths, each of them being a unique composition of
commonly used code fragments (e.g., loops, if-then-
else, and switch statements). To obtain most accu-
rate measurement results, we used a custom circuit
board allowing analog measurements.

First, we created energy profiles for each platform;
second, we created energy consumption estimates
using SEEP for each of the test application’s code
paths at different work loads. Third, we measured
several real execution runs and compared these with
the estimates calculated by our prototype.

4.1 Platforms under Test

For evaluation purposes we used two evaluation
boards with ARM processors of the OMAP3 micro-
processor family (OMAP3530 and DM3730). These
widespread processors power a broad range of hand-
sets, including devices built by manufacturers like
Motorola and Samsung. On our evaluation plat-
forms, we intercept the main power rails of the power
management processor which allows us to exclu-
sively measure the combined power consumption of
processor and main memory.

4.2 Energy Measurement Setup

Power consumption is calculated from multiply-
ing the supply voltage by the drained current. Com-
monly, this current is measured either directly using
an ammeter or indirectly by measuring the voltage
drop of the current flow at a shunt resistor using a
voltmeter. Integrating the power consumption over
time then results in the energy usage. However,
this integration step causes measurement errors as
the measurement device needs to sample. While
off-the-shelf multimeters only sample at a couple
of hertz, sample rates of the order of gigahertz are
not unusual for more expensive oscilloscopes. Yet,
the measurement device needs to sample for provid-
ing a measured value and the odds are that there
is momentary power consumption in between sam-
ples, which will not be part of the result. Due to
this weakness of today’s best practices, we chose an

alternative approach initially proposed by Kostan-
takos et al. [16] and designed a custom circuit board
based on a current mirror. The unique characteris-
tic of this circuit is that it allows energy measure-
ments without error-prone sampling intervals. We
kept the basic concept untouched but dimensioned
it for higher power drainage of our target hardware.

The measuring device works as follows. A cur-
rent equivalent to the one drained by the device
under test is being generated and flows through a
current mirror. Two capacitors under the control of
a flip-flop are being charged and discharged on an
alternating basis and the corresponding switching
events of the flip-flop are counted. At the end of a
measurement series, the energy consumption is cal-
culated under the knowledge of the duration of the
measurement series, the number of switching oper-
ations, and the final potential of the last capacitor
being charged.

In sum, our setup does not sample the measured
power consumption, therefore enabling an analog
measurement that leads to most accurate results
as no power consumption goes unnoticed. Further-
more, it can easily be monitored by an external sys-
tem and has low acquisition costs.

4.3 Energy Profile Generation

For each of the two evaluation platforms we have
created energy profiles stating the average energy
cost for each instruction. Both CPUs implement the
Cortex-A8 processor design and therefore share the
same instruction set (ARMv7). However, the pro-
cessors have a different power consumption behav-
ior as they are clocked at different speeds (720 MHz
vs. 1 GHz) and their die is assembled with different
semiconductor technology (65nm vs. 45nm).

In line with [17], we have measured the energy
consumption of the instructions by executing loops
of known length and recording the energy consump-
tion for the total run. The average energy consump-
tion of each instruction then is used for building the
platform’s energy profile. Although the DM3730 is
almost 300 MHz faster compared to the OMAP3530,
its energy consumption is lower, which can be at-
tributed to the enhanced semiconductor technology.

4.4 Results

We have executed ten path entities for each code
path of our test application. SEEP created two path
entities (see Section using the upper and lower
bounds of the corresponding code path and eight
intermediate path entities. Eventually, our frame-
work interpolated the energy costs for all path en-
tities of each code path.
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Figure 3: Energy Costs by Path Entity

Code path A exposes a constant energy consump-
tion, as its path constraints are neither used in a
loop construct nor does the code path vary its op-
erations depending on the actual path constraints’
values. In contrast, code path B and C show a linear
and exponential energy consumption, respectively.
In code path B, one of the path constraints impacts
a loop construct as it is used as a loop test expres-
sion for the inner-most loop. For code path C, an
exponential amount of computing operations is be-
ing executed depending on one of the values of the
effective path constraints.

To verify the correctness of SEEP, we measured
the energy consumption whilst executing predefined
binaries on the DM3730 platform. SEEP’s energy
estimates and the measurement results are shown
in Figure Compared to the measurements, the
predicted energy consumption varies by 0.089 mJ at
a max with an average deviation of 0.017 mJ.

S. CONCLUSION & FUTURE STEPS

This paper presented SEEP, a framework to aid
energy-aware programming. It exploits symbolic ex-
ecution, selective run-time measurements, and plat-
form-specific energy profiles to provide energy de-
mand estimates during the task of programming.
Despite its multi-platform support it is largely plat-
form independent. In sum, we consider SEEP as
a key component to make future software energy-
efficient prior to deployment.

Today, SEEP provides accurate estimates for the
base energy demand of a program. We will extend
the framework regarding different aspects in order
to make it generally applicable. First, we will in-
tegrate further system-specific characteristics into
the platform profiles. Especially energy consump-
tion caused by I/O operations and network links
need to be considered. Second, memory effects such
as cache misses [18], page faults, and varying mem-
ory access modes [19] potentially have impact on
the energy consumption and thus need to be in-
corporated. Besides, SEEP uses ongoing research
efforts targeted at expanding the scope of symbolic

execution [20]. Along with the aforementioned ex-
tensions, these efforts assist us to construct real-
world scenarios when executing program code sym-
bolically. We envision the integration of SEEP into
existing integrated development environments.
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