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ABSTRACT

Most of the real-time applicable dynamic storage allocators
rely on conventional locking strategies for protecting glob-
ally accessible data. But it is common that lock composi-
tions do not scale well under high allocation and dealloca-
tion rates in parallel scenarios, as they lead to convoy ef-
fects. Furthermore, lock compositions lead to jitter, which
is often a critical factor in real-time systems. Additionally,
it is often desirable to guarantee progress of threads in or-
der to be able to determine the worst-case execution time.

This led us designing a wait-free dynamic storage al-
locator (DSA), which can guarantee progress of threads and
does not influence other threads to make progress. Our
DSA implementation relies on a kind of buddy strategy
with approximate best-fit. Hence, it ensures for this kind
of allocation strategy typical memory wastage as a result
of internal fragmentation. Preliminary tests show that we
can outperform established DSA implementations in terms
of predictability, like the famous TLSF memory allocator.
To the best of our knowledge, our DSA is the first known
approach using a scalable and bounded nonblocking syn-
chronization strategy.

Our approach towards a wait-free DSA algorithm is
applicable in real-time applications where adequate a pri-
ori knowledge about the memory requirements is available
because it uses a statically allocated heap. We think that
most real-time systems — especially ones with hard timing
constraints — fulfill this precondition.
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1 Introduction

DSA is well studied in the field of general-purpose appli-
cations. Most of the DSA algorithms offer good average
response times and a good overall performance [10]. But in
the sector of real-time systems DSA algorithms are rarely
used because of several major drawbacks, such as wastage
of memory (fragmentation problem), nondeterministic and
unbounded worst-case response times as well as perfor-
mance issues [12]. There are some DSA algorithms, which
try to satisfy the needs of real-time systems, such as the

TLSF memory allocator [10]. There are also some real-
time aware kernels (e.g., RTAI or MaRTE OS), which offer
the functionality of TLSF to their applications.

In parallel real-time systems, running on shared-
memory multi-core processors, the use of lock-based DSA
algorithms can be very dangerous and inefficient. As an ex-
ample, the TLSF memory allocator uses one lock to bring
concurrent allocate, reallocate and free operations in a se-
quential order. Without care, this can lead to missing of
deadlines of tasks [13] and inefficient exploitation of paral-
lel cpu performance. Furthermore, the use of locks induces
jitter, which can be a critical factor, as it can lead to timing
anomalies [13]. As Lever et al. wrote in [9], most DSA
algorithms only scale up to quad-core processors.

Nonblocking DSA algorithms, such as the malloc
from Dice and Garthwaite [3], can be a good remedy for
these drawbacks. But nonblocking memory allocators with
a stronger progress condition than lock-freedom, called
wait-freedom, do not yet exist. Wait-freedom guarantees
that each thread completes its operation within a bounded
number of steps [4] and hence, satisfies the temporal needs
of real-time systems. Therefore, we present a wait-free
DSA algorithm by adopting the helping queue pattern,
which was firstly described in [14].

The helping queue pattern was originally used to im-
prove performance of a wait-free queue. The original
queue was implemented by an array. The queue operations
traverse over this array and try to atomically allocate an ele-
ment. The helping queue was introduced to speed this up. It
consists of wait-free linearizable counter operations!. Each
counter indicated the number of free elements in some part
of the array; enqueue operations traverse the helping queue
and try to decrement the counter. If the decrementing was
successful, the corresponding array part is guaranteed to
contain at least one free array element. The performance
increases from O(array_size) to O(y/array_size), pro-
vided the helping queue is dimensioned appropriately. We
exploit one side effect of this approach: If one array part
is completely free, atomically decrementing the counter by
its total content, that is to zero, reserves the total array part.
If the array part is contiguous, it could be used for data
structures that require more memory than one element can

las described in Sec. 3.1



deliver. We generalized this approach to binary trees and
implemented a DSA, which is able to satisfy arbitrary con-
current requests.

Our approach uses a statically allocated fixed-size ar-
ray of 512-bit aligned memory blocks, which are organized
in a balanced binary tree. Hence, sizes of memory blocks
are proportional to some power of two. We use an approxi-
mate best-fit strategy [10]. The state of free memory blocks
is managed on the basis of linearizable [5] wait-free coun-
ters, which are atomically decremented and incremented
using the fetch-and-add instruction (FAA) available on, for
example, the x86 architecture.

The usable size of memory per allocated chunk of &
blocks is restricted to k - 512 — 96 bits, since we use three
integer variable of 32-bit length for internal state adminis-
tration of memory blocks. The maximal size of memory,
which can be allocated, is restricted to 4 GB minus the size
of the mentioned state administration of 96 bits, because
our DSA approach is currently optimized to 32-bit archi-
tecture only. Possible values for k are 2¢ — 1 for some d.

1.1 Motivation

The use of DSA algorithms can have significant benefits
compared to the common static storage management [10]
in real-time applications.

A central class implementation of a DSA — with
maybe different behavior variants — can breed smaller
code size compared to the common practice of object-
specific, use case individual implementations with a rather
substantial portion of redundant code.

Additionally, using unique interfaces for memory al-
location, reallocation and deallocation is rather straightfor-
ward compared to using different memory pools with dif-
ferent semantics and behavior for different use cases.

Moreover, the possibility of using DSA offers some
kind of flexibility at runtime [6], even if the heaps are allo-
cated statically during the initialization of the application.

Up-and-coming multi-core processors partly force de-
velopers to rethink their memory management implementa-
tions in terms of scalability. The use of an appropriate DSA
can satisfy not only these scalability requirements, but also
leads to a more well-defined program structure [6].

1.2 Outline

The paper is organized as follows: Sec. 2 describes the re-
quirements of a real-time applicable DSA algorithm. In
Sec. 3 we present the idea, algorithm, worst-case execution
time, verification, evaluation and conclusion of our wait-
free malloc approach. Related work is shown in Sec. 4, in
Sec. 5 we summarize our results and experiences, and give
an overview over further work.

2 Requirements

The following points have to be considered for an applica-
ble wait-free DSA. They are the basis of our solution pre-
sented in the following section.

Correctness. Conventional locking strategies with
spinlocks or semaphores can suffer from multiple prob-
lems. The incorrect use of locks can lead to bounded
as well as unbounded priority inversion, starvation, dead-
locks, livelocks and race conditions; additionally, locks can
lead to convoy effects and introduce jitter [14]. These ef-
fects have to be avoided as far as possible. Furthermore,
a correct DSA implementation has to satisfy the follow-
ing conditions: (1) Allocated memory locations have to be
valid. (2) Allocated memory locations have to be at least
as big as requested. (3) Allocation requests may not in-
fluence already allocated memory areas. (4) And allocated
memory locations may not overlap.

Minimal fragmentation. Memory is often a very
limited resource, in particular in the cost-sensitive sector of
real-time systems. Moreover, such systems run over a long
period of time without reboot. The resulting requirement is
to waste as little memory as possible.

Bounded response times. In real-time systems it is
essential to fulfill the timing specifications. This makes the
worst-case execution time (WCET) of any operation an im-
portant parameter.

Fast response times. It is essential to guarantee fast
response time of memory operations to satisfy the needs of
computationally intensive applications.

Minimal jitter. As described above, jitter is often
a critical factor in real-time systems. Hence, we have to
minimize the jitter introduced by our protocols.

Scalability. In the future we expect a continuous in-
crease in the number of available processor cores. In or-
der to take advantage of this development, the number of
threads has to grow as well. This requires an approach that
is able to deal with a growing number of parallel opera-
tions, which allocate, reallocate and free memory.

No assumptions about timing. Allocation, realloca-
tion as well as deallocation of memory can occur at any
time. This means that we cannot make any assumptions
regarding when operations will actually occur.

3 Our Wait-Free DSA

We succeeded in designing a wait-free DSA using a kind
of buddy allocation strategy with approximate best-fit to
the principle of atomic reservation of a memory area.

3.1 Idea

The available memory is divided into predefined nodes or
memory blocks that form a balanced binary tree. The tree
has a predefined depth d and is completely filled, that is it
has 2¢ — 1 nodes. The structure of the tree does not change
at runtime, as it is allocated statically.



Figure 1. The initial state of the counters inside the tree of
depth 5.

The algorithm only allocates complete subtrees; that
is a successful allocation request allocates a node and the
complete subtree that starts at this node. This implies
that possible allocation sizes are of the form (2" — 1) -
(size_of _one_mnode) for some n smaller or equal to d.

Each node has a counter, which contains information
on the number of free nodes in the node’s subtree. The
counter is required to support the following two operations:

atomic_incr(c, S) This operation atomically increments
the counter ¢ by an given amount S and returns. There
is no return value. Therefor we used the zadd instruc-
tion available on, e.g., the Intel architecture.

atomic_decr(c,S) This operation atomically decrements
the counter ¢ by an given amount .S, iff the counter
is at least as great as S. It returns ¢rue on a success-
ful decrement. Otherwise the operations returns false
and leaves the counter unchanged. To realize the con-
ditional part of this operation, we use two consecutive
and interruptible xadd operations. The impact of this
approach is discussed in Sec. 3.4.

A subtree with depth d has 2¢ — 1 nodes and 29!
leaves. The counter of the subtree’s root node is initialized
to the number of leaves in the subtree. After the initializa-
tion the counter contains at most the number of unallocated
leaves in this subtree. In Fig. 1 the initial state of an exam-
ple tree of depth 5 is shown.

If a subtree is allocated, its counter is zero; the values
of the potential other counters in this subtree are undefined.
Note that a counter of zero does not always mean that the
subtree starting at the node is itself allocated. For example,
Fig. 2 shows the state of this tree after several successful
allocations. The character *X’ indicates undefined coun-
ters. Note that the right child node of the root node has
a counter of zero, even if it has not been allocated itself.
Instead of that all of its sub-subtrees have been allocated.

An allocation request that needs a subtree of depth d,
i.e. with 2¢ — 1 nodes, has the number of leaves of this sub-
tree, that is 2971, as size. Correspondingly, a deallocation
request that frees a subtree of depth d with 2% — 1 also has
size 241,

Figure 2. The tree of Fig. 1 with six allocations of mem-
ory — three of size 1, one of size 3 and two of size 7.

3.2 Algorithm
3.2.1 Allocation

The allocation algorithm starts at the root node and tra-
verses the tree recursively in depth-first order. It tries to
allocate memory by atomically decrementing the counter
of a root node to zero.

A simplified pseudo-code version of the algorithm is
illustrated in Fig. 3. The recursive method is called with the
root node and the number of leaves in the wanted subtree
as initial arguments.

It tries to decrement the counter of the current node
by the size of the allocation request?. If this fails, it returns
an indication of failure; in our case NU L L. The counter of
the current node contains at most the number of unallocated
leaves in the subtree3. Thus, the algorithm will not continue
if the subtree does not contain enough memory.

It then checks whether the subtree starting at the cur-
rent node already has the requested size, in which the node
has been successfully allocated and its address is returned.

If the size of the subtree is greater than the requested
size, the algorithm tries a recursion call for each of the two
child nodes of the current node. If one of these was suc-
cessful, the allocated node is returned. If neither of the two
recursive calls was successful, the algorithm re-increments
the counter of the current node and returns an indication of
failure.

3.2.2 Deallocation

The deallocation algorithm is even simpler: Firstly, it re-
sets all previously undefined counters of the subtree to be
deallocated to their initial values. Then, it starts at the root
node of the subtree that is to deallocate, walks up the tree
towards the root node of the whole tree and increments ev-
ery passing node by the number of leaves of the subtree that

%i.e. by the number of leaves that a subtree of sufficient size has to
have

3See Sec. 3.4 for an explanation of the difference; it is sufficient to
know that the counter is never greater than the number of unallocated
leaves.



try_allocate(node N, size S) {
if (atomic_decr (N.counter, S)) {
if(S == size of subtree
starting at N) return N;
for C in both childnodes {

node tmp = try_allocate(C, S);

if (tmp != NULL) return tmp;
}
atomic_incr (N.counter, S);

}
return NULL;

Figure 3. Pseudo-code of the allocation algorithm

release (node N) {

reinitialize_subtree (N);

S := number of leaves of subtree
starting at N;

atomic_incr (N.counter, S);

while (N != root node) {
N := parent of N;
atomic_incr (N.counter, S);

Figure 4. Pseudo-code of the deallocation algorithm

is to be deallocated. A simplified pseudo-code version of
the deallocation algorithm is shown in Fig. 4.

3.2.3 Transformation of the Tree to an Array

The tree structure can be easily transformed to an array.
This transformation has to fulfill the condition that nodes
in each subtree have to occupy a contiguous slice of the
array.

This transformation can be defined recursively: A tree
consisting of one leaf is equal to one array element. Every
other tree consists of one root node and two subtrees of the
same size. It is arranged as follows: Firstly, both subtrees
are recursively converted to arrays. The array that repre-
sents the whole tree is then constructed by concatenating
the array of the left subtree, then the array of the right sub-
tree and at last one array element for the root node.

The result is shown in Fig. 5, where a tree of depth 4
is translated to an array of size 15.

Each node is represented as a struct as illustrated in
Fig. 6.

For n consecutive allocated nodes, the allocation and
deallocation algorithms use the member length of the
first node and the members padding and counter of the
last node. Everything between them is usable as user data
by the respective application. This is illustrated in Fig. 7.

Figure 5. Translation of the tree from Fig. 1 to an array.

struct node {
uint32_t length;
uint32_t datal[l3];
uint32_t padding;
uint32_t counter;

}i

Figure 6. Representation of a node in memory

The address returned by our malloc is the start address
of the data array in the first of the consecutive allocated
nodes. The length member is required to find the root
node of a subtree*. The padding member is used to de-
tect buffer overruns; it is not strictly neccesary and can be
omitted at the risk of not detecting heap corruption.

length counter
W—rrh—rrh—ﬁﬁﬂ
} i\

usable memory padding

Figure 7. Three consecutive allocated nodes represented by
structs

Every consecutive array of allocated nodes is equiv-
alent to a subtree. The last node is the root node of the
subtree. Its counter is accessible by the allocation and deal-
location routines.

3.3 Worst-Case Execution Time

We determine the WCET for our memory allocator in this
section.

Firstly, we examine the execution time of one single
call of the allocation function, ignoring recursion calls. All
actions apart from the recursion call have, by definition,

4The address passed to ”“free”” belongs to the first node of the subtree
(according to the layout of the tree in the array), while the root node is the
last node.



upper execution bounds and the function does not contain
loops, so the execution time required for one call itself is
bounded.

As the function recursively traverses parts of the bi-
nary tree in depth-first search order, it is called only a finite
number of times — namely at most once for each node.

Therefor, an upper bound for the execution time of the
allocation can be easily established: The recursive function
is executed at most

available_mem
64 bytes

available_mem

) =0O(

size_of _one_node

) (D

times.

Deallocation also has bounded response time. Firstly,
the re-initialization of the nodes in the subtree is bounded.
This re-initialization is done with a depth-first traversal of
the subtree, which visits each node of the subtree at most
once. Worst-case execution time for this is

size_of _mem_chunk

size.of onenode ) = O(size_of _subtree). (2)

Secondly, the loop that makes up the rest of the func-
tion is executed a bounded number of times. This loop is
executed once for each node on the path from the root node
of the subtree that is freed to the root node of the total tree.
The number of nodes on this path is obviously bounded;
an upper bound is log,(size_of _total_tree). Therefor,
deallocation completes in at most O(size_of _subtree +
log, (size_of _total_tree)) steps.

3.4 Verification
3.4.1 Correctness

As mentioned in Sec. 2, a correct implementation of a DSA
needs to satisfy the following conditions to be correct:

1. Allocated memory locations have to be valid.

2. Allocated memory locations have to be at least as big
as requested.

3. Allocation requests may not influence already allo-
cated memory areas.

4. Allocated memory locations may not overlap.

Our algorithm works on a predefined array, hence the
system designer is responsible to dimension the array so
that all allocation requests can be satisfied. Additionally, if
he or she ensures that the array is located in valid memory,
we also guarantee that returned addresses are valid. Only if
there is not enough free memory in the array available, the
allocation operation returns NU L L.

The second condition is also satisfied: Our algorithm
returns a node only if the depending subtree is as big as

needed. This is guaranteed by correctly designing the re-
cursion of the allocation routine: If the size of the tree start-
ing at the current node is known, the size of the two sub-
trees is also known. As we know the size of the total array
and hence the total size of the tree, we can keep track of
whether the current node and its subtrees have the correct
size.

As the algorithm only modifies the counters of the
nodes, the third condition is satisfied, if the algorithm only
modifies the counters that do not lie inside allocated mem-
ory. As shown in Sec. 3.2.3, of all the counters in an allo-
cated subtree, only the counter of the root node’s subtree is
not inside the allocated memory, every other counter in the
subtree may not be touched.

The subtree is allocated, so the counter of the sub-
tree’s root node is zero. Thus, no allocation or deallocation
request will descend into the node’s subtree. Every allo-
cation request will first try to decrement the node’s counter
and will fail; it then will not descend into the subtree. Deal-
location requests do not descend into subtrees anyway. The
only way a deallocation request gets to change the subtree’s
root node’s counter is, if it tries to deallocate the same sub-
tree, which is valid. Thus, counters inside the array remain
untouched by the algorithm.

The fourth condition is equivalent to the following
condition, which is somewhat easier to prove: From the
moment of allocation until the deallocation of an area of
memory, every other concurrently allocated area will not
overlap this area.

Our allocation algorithm deals with trees and only al-
locates complete subtrees. Thus the only possible way two
areas can overlap is, if one area is contained in the other,
that is if one subtree is a sub-subtree of the other subtree.
To show that our algorithm also satisfies the third condition,
it is sufficient to show that if a node is allocated, there is no
other node in its subtree that is already allocated and there
is no other pending allocation request inside the subtree.

To prove this, we introduce the following condition,
which is always true, if the implementations of the two
counter operations are atomic as mentioned in Sec. 3.1:

Let n; be any node in the tree; let L; be the set of
leaves of the subtree that starts at n;. Let ¢(n) be the value
of the counter of the node n; let a(n) be true, if and only
if the node n is currently allocated. Let furthermore R; be
the set of requests inside the tree starting at n,;, meaning
the set consisting of every pending allocation request that
has decremented the counter of n; and every deallocation
request that has not yet incremented the counter of n;. For
each request 7, the function s(r) shall return the size of the
request.

For each node n; and its counter ¢(n;) the following
relation holds: The value of the counter plus the number of
allocated nodes in the corresponding subtree plus the sum
of the sizes of all pending allocation and deallocation re-
quests that are currently in the subtree is equal to the num-
ber of nodes in the subtree.



Formally speaking, the equation 3 holds for every
node n;.

c(ni) +{n; € Li,a(ny)} + Y s(r) = |Li|  (3)

reR;

Equation 3 is true for a freshly initialized tree. By
examining the following five possible changes that can be
caused by allocation as well as deallocation requests, it can
be proven that equation 3 always holds:

1. Any allocation request might enter the subtree. This
is achieved by atomically decrementing the counter of
the node; hence the equation 3 holds.

2. Any allocation request might leave the subtree unsuc-
cessfully. It then atomically increments the counter by
the size it tries to allocate, so the equation 3 stays true.

3. Any allocation request might leave the subtree suc-
cessfully. This means it succeeds in allocating a sub-
subtree of the subtree. Thus the number of allocated
nodes in the subtree atomically increases by the size
of the allocation request, so the equation 3 stays true.

4. Any deallocation request might enter the subtree.
Deallocation requests enter at the root nodes of al-
located sub-subtrees when they deallocate the sub-
subtree by atomically incrementing the counter of the
sub-subtree’s root node. Therefor the number of al-
located nodes atomically decreases corresponding to
the increasing sum of sizes of pending requests, so the
equation 3 holds.

5. Any deallocation request might leave the subtree. This
happens when it atomically increments the counter of
the subtree’s root node, before walking further up the
tree. In this case, the counter atomically increases cor-
respondingly to the decrease of the sum of sizes of
pending requests, so the equation 3 stays true.

From this point of view it is easy to prove that if
an allocation request successfully allocates a node, then
there are neither allocated sub-subtrees of the subtree of the
node, nor are there any pending requests inside the subtree.

This is a trivial consequence of the employed algo-
rithm: If an allocation request tries to allocate a node’s
subtree, it tries to atomically decrement its counter by the
size of the subtree. If this succeeds, the number of allocated
nodes in the corresponding subtree plus the sum of the sizes
of all pending allocation and deallocation requests that are
currently in the subtree must have been zero.

An allocation request of size n that has successfully
decremented the counter of a node whose subtree consists
of n nodes has allocated this subtree. There can be no other
pending allocation requests in this subtree; they would have
decremented the counter of the node, so it would have been
less than n and the previously mentioned allocation request
would have failed.

Figure 8. A highly fragmented tree with four allocations of
memory, each of size 1.

1 Lof o] [1]

(b) State B

(a) State A

Figure 9. An example tree of depth 3, to show why our
DSA is not linearizable.

3.4.2 Linearizability

It might be a disadvantage of the employed algorithm that it
is not linearizable [5], that is a parallel execution exists that
cannot be formed into a respective sequential execution.

This can be shown with an simple example: Consider
the tree in Fig. 9(a). If two allocation requests, one with
size 2 and another with size 1 were executed in parallel,
then both requests potentially failed, iff the request with
size 1 is issued within the time frame where the request
with size 2 has already decremented the counter of the root
node. This scenario is illustrated in Fig. 9(b). Note that
there are no consecutive nodes to satisfy this allocation re-
quest of size 2. Hence this request will re-increment the
counter of the root node when it recognizes that there is
not enough contiguous memory available. Within this time
frame the allocation request of size 1 will be rejected, be-
cause the counter of the root node is 0.

This implies that our DSA algorithm is not lineariz-
able, because the parallel execution history cannot be
formed into a sequential one, as the sequential execution of
both requests guarantees that the requests with size 1 will
always succeed. This does not pose to be a problem, but
within this time frame memory cannot be allocated even if
there is enough to satisfy incoming requests.

We can make a weaker guarantee though: For each
concurrent history of allocations without allocation fail-
ures there is an equivalent sequential history without fail-
ures. Furthermore, for each concurrent history of alloca-
tions, where only the last allocation fails, there is either a
equivalent sequential history where the last allocation also



fails, or there is a sequential history which is equivalent ex-
cept for the last allocation and whose last allocation does
not fail.

Unfortunately, this does not extend to arbitrary con-
current histories. As some early failing allocation in the
concurrent history might succeed in the sequential history,
it is possible that later on there is not enough memory avail-
able in the sequential history, so later on allocations that did
succeed in the concurrent history might fail in the sequen-
tial history. Note that this is only possible, if there was an
allocation failure in the concurrent history. Basically, trans-
formation of the concurrent history to a sequential history
makes allocation failures happen later and possibly less of-
ten, but not more often.

3.5 Evaluation

In this section we define our testbed and some micro bench-
marks to briefly® evaluate our wait-free DSA implementa-
tion to two famous DSA implementations.

3.5.1 Test Setup

As a highly parallel hardware environment we used a 16-
core machine, consisting of four Intel Xeon E7340 quad-
core processors, running at a 2.40 GHz clock frequency.
Each CPU had 256 KB L1 cache for data and instructions
as well as 4 MB L2 cache per core pair (i.e. 8§ MB per
CPU) and 1,066 MHz FSB. Additionally, this machine had
32 GB main memory and was running a installation of De-
bian Linux 5.0.2 with a 2.6.29.3 vanilla kernel.

3.5.2 Test Method and Scenarios

For experimental results we implemented four test cases
and evaluated the results of our approach to the TLSF DSA.
Additionally, we also measured the times of the famous
DSA from Michael [11] found in the atomic_ops project®,
even if it is not fully comparable with TLSF and our ap-
proach in terms of temporal requirements.

In each test case, we started 16 threads with the high-
est real-time priority on different idle cores. Furthermore,
we dimensioned the heap to 64 megabytes.

Test case I: Here we measured the time required to
allocate 948 bytes of memory. The allocated memory is
not freed. The test case terminates if no more memory is
available.

Test case II: Here we measured the time required to
allocate 948 bytes of memory and immediately free them
again. The test case terminates after a predefined number
of 20,000 attempts.

Test case III: Here we measured the time it takes to
allocate memory in exponentially increasing sizes, start-
ing with 10 bytes and growing with a factor of approxi-

Swith respect to the already exploited space restriction of this paper
6 Atomic_ops project: www.hpl.hp.com/research/linux/atomic_ops

I II 111 v

min : our 5,006 2,252 1,114 467

tisf 6,485 612 459 416

atops 629 901 629 246
med : our | 19,975 27,557 29,444 12,019
tisf | 14,475 19,975 30,600 | 22,788

atops | 13,846 | 20,799 13,642 1,802
max : our | 29,707 37,111 57,264 36,788
tlsf | 6e+05 3e+05 | 536,698 | 362,585
atops | 367,438 | 372,699 | 1.1e+08 | 2.0e+07
avg : our | 20,046 27,469 30,551 11,662
tlsf | 54,301 46,791 74,580 | 47,387
atops | 48,500 | 53,998 | 777,530 | 131,865

Cy i our 0.15 0.14 0.35 0.6
tisf 1.7 1.3 1.3 1.3
atops 14 14 8.5 9.3
util. : our | 92.58% J. 66.79% J.
tisf | 97.92% J. 98.99% J.
atops | 92.49% J. 17.32% J.

Figure 10. Results in cpu clock cycles of our test cases

mately 1.25. Similar to test case I, the allocated memory is
not freed. The test case terminates, if no more memory is
available.

Test case I'V: Here we measured only the time it takes
to allocate memory in exponentially increasing sizes, as
mentioned in test case III. After allocation the memory is
freed immediately. The test case terminates, if no thread
can allocate as much as it wants to.

3.5.3 Results

Our results are shown in Fig. 10. We use the acronyms
our for our implementation, tls f for the real-time memory
allocator TLSF and atops for Michael’s lockfree DSA. Ad-
ditionally, we are using ¢, for the coefficient of variation.
As shown in Fig. 10, our DSA achieves the least dis-
persion about the mean, as the coefficient of variation ¢,
is very small. Hence, the times for allocation and deal-
location of our memory allocator are highly deterministic.
TLSF uses one global lock to bring concurrent allocate, re-
allocate and free operations in a sequential order; lock con-
tention is clearly expensive in terms of performance and
determinism. In contrast, Michael’s DSA suffers from star-
vation, which is much more expensive in our test cases.
Our approach does not use any blocking locks and guaran-
tees progress, which leads to a much smaller WCET.
Without taking the outliers into account, all DSA im-
plementations show a good overall performance, as shown
in the according median med values. However, the average
response times avg of our approach are much smaller than
the others, if we take the outliers into account.
Furthermore, our tests show that memory consump-
tion is typical of buddy allocation; if the requested sizes



fit well, the memory wastage is acceptable. If the sizes do
not match the possible tree sizes, internal fragmentation in-
creases, which is typical for buddy allocation strategies.

3.6 Conclusion

Referring to the requirements mentioned in Sec. 2, we can
conclude that most of them are indeed satisfied.

We evaluated our DSA in terms of correctness in
Sec. 3.4.1. Indeed our protocol is not linearizable as shown
in Sec. 3.4.2 (i.e. an allocation request will sometimes fail
to allocate memory even there is enough memory avail-
able), but from a practical perspective this situation hap-
pens only if we are running very close to an out-of-memory
scenario with high fragmentation. If we enlarge the mem-
ory in Fig. 9 to size 8, there is no possible execution his-
tory, where one of the four allocation requests of sizes 1, 1,
2 and 1 can be rejected. Therefore our weaker correctness
condition may not be a problem from a practical point of
view.

Moreover, our algorithm has bounded response times
as mentioned in Sec. 3.3, which — ignoring the cache ef-
fects — is dependent on the external fragmentation of the
available memory. The internal fragmentation is typical for
buddy allocation strategies. It is up to the application de-
sign to prevent a high fragmentation. This also leaves room
for further research efforts.

Additionally, our algorithm is completely interrupt
transparent, i.e. it can also be used in an interrupt handler
and does not introduce bounded priority inversion scenar-
ios like approaches with conventional locking strategies.
Moreover, it is highly scalable, as the wait-free property
ensures that DSA operations cannot influence other threads
to make progress.

Compared to other DSA, the response times of our
approach are highly predictable, as a result of minimal jit-
ter. Especially conventional lock contention of memory al-
locators, e.g., TLSF, lead to highly unpredictable response
times and respectively to a very pessimistic WCET.

4 Related Work

There is a lot of published work on dynamic storage alloca-
tion. For brevity, we only present the most important work
for the scope of this paper.

Dice and Garthwaite found out that typical DSA
implementations did not scale well in high-order multi-
processor systems. They present in [3] a mostly lock-
free malloc by using multi-processor restart-able critical
sections (MP-RCS). Their MP-RCS implementation needs
a kernel driver to modify the decisions of the scheduler
where a thread will run (either in a notification routine or
at the original interrupted instruction). Without a priori
knowledge about the application and the blocking system
calls, it is not possible to determine an upper bound for
their malloc operations.

Michael presents a scalable lock-free DSA in [11]. He
claims that his DSA can be used even in real-time applica-
tions. Nonetheless, lock-freedom only guarantees that at
least one thread makes progress at each step and hence can
lead to starvation of some other threads. Without further
a priori knowledge about the application, we cannot deter-
mine an upper bound for the response times of his DSA
operations. Anyway, we used his DSA for our evaluation
as it offers the best performance on lockfree DSA.

As mentioned in Sec. 1, Masmane et al. present
in [10] a memory allocator for real-time systems, called
two-level segregate fit (TLSF). It offers fast and bounded
response times with an average fragmentation lower than
15 percent. However under stress situations TLSF did not
scale well, as it uses one global lock to bring concurrent
allocate, reallocate and free operations in a sequential or-
der. Furthermore, in preemption scenarios it suffers from
bounded priority inversion, which introduces jitter.

Puaut presents in [12] a case study of performance
measurements of different DSA implementations (e.g., se-
quential fits, indexed fits, segregated fits and buddy sys-
tems). She evaluated their results under real and synthetic
workloads in terms of suitability in real-time systems. She
found out that the best technique for DSA highly depends
on the use case. As an example, in scenarios with low
allocation/deallocation rates buddy systems and quick-fit
strategies are the best-qualified techniques in terms of pre-
dictability as well as performance.

Also Kriemann presents in [7, Chapter 8] perfor-
mance measurements of a variety of DSA implementations
investigated under real and synthetic use cases. Unfortu-
nately, the scope of his PhD thesis does not cover temporal
requirements.

Herter et al. present in their work-in-progress pa-
per [6] an approach of a DSA that makes cache per-
formance predictable and allocates as well as deallocates
memory in constant time. Their DSA is a cache-conscious
modification of TLSF. Their approach allocates/deallocates
from segregated lists to achieve a constant time. Addition-
ally, they added a new parameter to their malloc, which
offers the possibility to specify a dedicated cache set. This
induces the requirement that every developer must be fa-
miliar with the cache of the used processor. Investigations
for multi-core processors were not made.

There are also several approaches for multi-core
aware DSA for general-purpose systems. A few of them
are: Hoard [1], LKMalloc [8], Vee and Hus’s allocator [15]
and Vmem [2]. All approaches use locks to protect the heap
data for concurrent accesses.

Our work is primary inspired by [14], where we
present a wait-free linearizable helping queue mechanism
for an unsorted queue. In [14] ’local preferences’ were in-
troduced to heavily minimize contention on the queue ele-
ments. Locality is a desirable property in a parallel environ-
ment, as it ensures the avoidance of interferences with other
threads. Additionally, a helping queue mechanism was in-
troduced to heavily reduce the time needed to traverse the



queue in order to find a free queue element. In this paper
we have adopted this pattern of the helping queue mecha-
nism for our DSA implementation.

5 Conclusion and Further Work

To our knowledge, we designed the first wait-free approach
of a dynamic storage allocator, that guarantees highly pre-
dictable response times and hence, can satisfy the temporal
requirements of real-time applications.

There are several optimizations to the presented al-
gorithm we did not evaluate. Firstly, it could be possi-
ble to improve the memory efficiency of the algorithm by
changing the size of a node from 64 bytes to a different
value. This might improve the memory utilization under
some conditions.

Another possible optimization would be to change the
behavior of the recursive traversal function in order to de-
crease the number of write operations, which are more ex-
pensive than respective read operations. It should be feasi-
ble to traverse the tree without changing the counters and,
once we have found a ’suitable’ subtree, walk down from
the root node along the direct path. This change would
likely increase performance under low concurrency and
high fragmentation conditions. It would likely be detrimen-
tal to performance in a high concurrency case, even though
execution time would still remain bounded.

Yet another possible optimization would be lazy re-
initialization of nodes that are to be released. Currently
deallocation takes time proportional to the size of the freed
memory chunk, by re-initializing every node in the subtree.
This is not necessary, if the next allocation request needs
memory of the same size. One possible solution would be
marking the root node of a freed piece of memory with
a flag and omitting the re-initialization of the subtree. A
subsequent allocation request that encounters the flag and
needs to descend into the subtree can take over as much
re-initialization as needed. This optimization would most
likely increase the performance of deallocation, at a slight
cost for the allocation performance.
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