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Abstract. Creating a valid software configuration of a product line
can require laborious customizations involving multiple configuration file
types, such as feature models, domain-specific languages, or preproces-
sor defines in C header files. Using configurable off-the-shelf components
causes additional complexity. Without checking of constraints across file
types boundaries already at configuration time, intricate inconsistencies
are likely to be introduced—resulting in product defects, which are costly
to discover and resolve later on.

Up to now, at best ad-hoc solutions have been applied. To tackle this
problem in a general way, we have developed an approach and a corre-
sponding plug-in infrastructure. It allows for convenient definition and
checking of constraints across configuration file types and product line
boundaries. Internally, all configuration files are converted to models, fa-
cilitating the use of model-based constraint languages (e.g., OCL). Con-
verter plug-ins for arbitrary configuration file types may be integrated
and hide a large amount of complexity usually associated with modeling.
We have validated our approach using a quadrotor helicopter product
line comprising three sub—product-lines and four different configuration
file formats. The results give evidence that our approach is practically
applicable, reduces time and effort for product derivation (by avoiding
repeated compiling, testing, and reconfiguration cycles), and prevents
faulty software deployment.

1 Introduction and Motivation

Creating consistent configurations for larger-scale product lines often is a labo-
rious task affecting various types of configuration files with subtle dependencies.
Whereas customer-visible variability might be bound via selecting options in
a feature model, the deployment of software to physical nodes may reside in
domain-specific models or text files [10], while fine-tuning is done via preproces-
sor variables in C header files. Choosing certain features in the feature model may
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impede certain choices in the domain-specific model, while setting a preprocessor
variable in turn may presuppose a feature to be set. Configuration complexity in-
creases even further when employing configurable off-the-shelf components (e.g.,
Apache, Oracle) or when building combined products including other product
lines, which in turn expose their variability via certain configuration file formats.

One solution often recommended and applied to ease product configuration
is to explicitly limit the scope of the product portfolio by offering only a small
subset of possible configurations to the customer. When strictly applied, it is
possible to use a single top-level configuration file (e.g., a feature model con-
figuration) and automatically generate all the remaining configuration files no
matter which format [4]. However, a very common scenario in industry [6] is that
a customer actively negotiates the characteristics of the product. This makes
application engineering a laborious task requiring implementation of additional
modules, but also fine-grained configuration and customization at various loca-
tions with subtle, implicit dependencies. In such a case, a predefined subset of
products, configurable via a single entry point, is not realistic.

Consistency constraints that span different configuration file types need to be
enforced at configuration time to prevent inconsistencies, in particular if the mis-
configuration is known to manifest only sporadically during runtime (e.g., due to
race conditions). One promising approach for consistency checking is to trans-
form all configuration files into a common representation and use constraint-
checking languages. Model-based development offers powerful constraint lan-
guages, such as OCL [13] or XPand Check [21], and asserts that virtually every
artifact may be transformed into a model [3]. In fact, for various file types, there
do exist converters or converter frameworks into the modeling world, for exam-
ple, for textual grammars (XText [22]) or XML files (XMLSchema [9]). However,
combining all these single frameworks in an ad-hoc manner for a specific product
line in order to check constraints is a considerable amount of work. A product
line engineer familiar with a particular domain (e.g., embedded systems) might
not be a modeling expert as well, who is able to set up, combine, and tame all
the modeling technologies and tools. Moreover, such an infrastructure should be
developed in a generic way in order to apply it to various product lines. Up to
now, at best ad-hoc solutions for doing constraint checking are applied in indus-
try. As we have argued in a previous paper [8], a general approach for constraint
checking across arbitrary configuration file types is missing.

To tackle this problem, we have developed an approach and corresponding
tooling for an extensible constraint-checking infrastructure. It supports scenarios
where multiple configuration file types are involved, which may even be spread
over several sub—product-lines and off-the-shelf components. Our infrastructure
provides for comfortable definition and checking of constraints independently of
the configuration file type used and achieves this by transforming all configura-
tion files to models in a transparent way. We have already developed plug-ins
for several file types (such as feature models, XMLSchema, Ecore [9], KCon-
fig, C preprocessor defines) and support different constraint definition languages
(OCL, XPand Check). Arbitrary file formats may be supported—Dby writing con-



verter plug-ins for transforming configuration formats into the internally used
modeling format (Eclipse Ecore). We have applied our approach to a quadrotor
helicopter product line (I4Copter) comprising three sub—product-lines and four
different configuration file formats. By discovering and resolving inconsistencies
at configuration time, we could considerably reduce the time and effort for prod-
uct derivation. Detecting them at later stages of product derivation—at compile
time, testing time, or after deployment—, as it was necessary beforehand, was
far more costly.

After introducing the 14Copter product line and its configurability as a con-
crete scenario guiding through the paper in Section 2, we contribute a practice-
oriented approach for mapping configuration files of different types to models
(Section 3). Then, we account for our generic, extensible constraint-checking
framework, which provides comfortable means for constraint definition while
minimizing the necessary knowledge about model-based development for the
product line developer and the configuration engineer (Section 4). Sections 5
and 6 report on its application to the I4Copter and the achieved results. Finally,
we discuss our approach and related work (Sections 7 and 8).

2 Scenario: Quadrotor Helicopter Product Line

The evaluation platform for our product line research is the I Copter [19] quadro-
tor helicopter, which has been designed and developed to resemble embedded
real-time systems arising in real-world product line scenarios. The 14Copter soft-
ware product line comprises three sub—product-lines: one product line for appli-
cation logic, which also models the interface to the hardware (CopterSwHuw),
the commercial operating system product line PXROS!, and, as an alternative
operating system product line, the department-internal CiAO [11].

The CopterSwHuw product line is implemented in C++4; various software fea-
tures are optional and alternative (approximately 50 features in total). There are
several hardware variants of the I4Copter, comprising different frames, sensors,
and actuators, so that the hardware as well forms a product line. The software de-
pends on information about the available hardware components (approximately
60 features). Both the software part and the available hardware components of
the CopterSwHw product line are configured via C preprocessor directives.

The application logic may run either on the operating system product line
PXROS or on CiAO. For configuring PXROS (tasks and other parameters), a
simple textual domain-specific language (DSL) is used, out of which a generator
creates the corresponding C start-up code. While PXROS is more reliable and
mature, the department-internal operating system product line CiAO is much
more versatile. It uses pure::variants [2] feature models for configuring various
functional and architectural properties and comprises an own XML dialect, de-
fined in XMLSchema, for configuration of operating system tasks.

Domain-specific configuration constraints of the I4Copter span several files
and are therefore hard to enforce (see also Figure 1). When equipping the hard-
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ware with an acceleration sensor using the Serial Peripheral Interface (SPI) bus,
for example, this has to be described in the corresponding hardware header file
(AC_PRESENT). The application software product line usually would (although
not necessarily!) be configured with the corresponding sensor device driver in
the software header file (AC_DRIVER). Using any SPI device requires that an SPI
bus controller software module is present, which is implemented as an operat-
ing system task. Thus, a corresponding operating system task (SPITask) needs
to be initialized appropriately either by using the DSL of PXROS or the XML
language of CiAO. When choosing CiAO as the operating system, further con-
figuration details need to be enforced, as CiAO is highly configurable. When
including the SPITask, it must be ensured that it sends its messages to the bus
with the same priority as the task that triggered the message. This requires se-
lecting an appropriate priority mechanism in the feature model configuration,
for example the priority inheritance mechanism (kernel_pip).
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Fig. 1. Exemplary domain constraints within the I4Copter product line.

There exist various of such domain-specific constraints in the I4Copter prod-
uct line. Some are rather recommendations or warnings, others are mandatory.
The constraints span several different configuration file types and product lines.
This makes the configuration of the [4Copter product line sufficiently complex
to resemble the challenges faced in industrial-scale embedded systems develop-
ment. We will return to the I/ Copter as an illustrative example when we explain
the general approach, its architecture, and validation.



3 Product Line Configuration and Modeling

Our approach is based on the assumption that every artifact involved in product
line configuration has a corresponding representation in the modeling world [3].
Basically, the configuration of a concrete product is described by its set of con-
figuration files. The product line itself defines, either implicitly or explicitly, the
set of configuration file types it can deal with. As mapping of product lines and
configurations into the modeling world is not without pitfalls, we will now first
introduce general modeling terminology and then explain details how we perform
the mapping of configuration files and configuration file types.

3.1 Modeling Terminology

A model is a formal abstraction of a concept (e.g., a physical system or software)
describing its concrete entities and relationships [16]. A model is abstract in the
way that it is not tied to a certain textual or graphical representation. The
formal rules, which specify the entity and relationship types allowed in a certain
model, are provided by its metamodel. As an example, a simple metamodel for
modeling operating system tasks will comprise the root entity type TaskList,
which contains an arbitrary number of Task elements, which in turn have a name
element of type string and a priority of type integer. A model conforming to
this metamodel, for instance, defines a concrete TaskList comprising exactly one
Task with name = "SPITask" and priority = 1. For specifying metamodels, a
metamodeling technology is used (e.g., our implementation uses Eclipse Ecore).

Within one metamodeling technology, it is possible to define constraints,
such as the SPI bus constraints described in Section 2, in a formal, machine-
interpretable way. Common examples for such languages are OCL and XPand
Check. Constraints on models usually are specified using the elements defined in
the metamodel. For example, a constraint on a task model can leverage the fact
that each TaskList has a number of Tasks, which in turn have a name and a pri-
ority. Querying whether there is any Task called “SPITask” for the whole system
can therefore be formulated very concisely, for example in XPand Check, which
implicitly iterates over sets: myTaskList.tasks.name.contains("SPITask").
Subsequently, we will describe how we map product lines and their configura-
tions into the modeling world, that is, to metamodels and models.

3.2 Mapping Product Line Configurations to Models

A configuration file is an artifact that specifies the characteristics of a prod-
uct (e.g., a web-server configuration file, C header files, but also domain-specific
model and text files). A configuration file therefore corresponds to a model. The
elements and the relations allowed in the configuration file (i.e., the abstract
syntax part of the configuration file type exempt from its concrete syntax) cor-
respond to what is the metamodel of this model. Accordingly, a configuration of
a product line can be seen as a set of models, the product line itself as a set of



metamodels. Although the mapping is straight-forward, it is still open how to
actually derive metamodels from a product line.

We distinguish two classes of configuration file types, which differ in the way
to derive their metamodel. Firstly, there are those for which the product line
already provides an explicit specification file that can be converted to a product-
line—specific metamodel. Secondly, there are those where this is not the case, and
only a less expressive, generic metamodel can be used.
Product-Line—Specific Metamodels via Specification File. Some prod-
uct lines comprise an explicit specification of what is a valid configuration file for
them. For example, the CiAO product line defines the format for a valid task con-
figuration XML file in XMLSchema. For PXROS, we developed a simple textual
grammar specifying which constructs are valid in its domain-specific configura-
tion file. Feature models can be interpreted as metamodels as well [17]. Finally,
model-driven product lines specify their metamodels explicitly (e.g., [20]). Tools
that map specification files to product-line—specific metamodels are already avail-
able in many cases, for instance, for XMLSchema files and for XText grammars
there exist converters that derive the corresponding Ecore metamodels [9, 22].

Generic Metamodels Without Specification File. There are, however,
also configuration files that lack any expressive and formal specification of what
the valid constructs are in the context of one particular product line. This is, for
example, the case for Java property files and for C header files containing prepro-
cessor defines. In principle, arbitrary identifiers may be set to arbitrary values
in a preprocessor define statement, such as #define AC_PRESENT 1. Which de-
fines are necessarily required, optional, or unused, or what the permissible value
ranges are for a particular product line, is not specified explicitly and can only
be discovered by reading source code or documentation. Although a product
line engineer could use this information to reconstruct a product-line-specific
specification file (e.g., an XText grammar), this often will not be the case.

We therefore see the need to map certain file types to less expressive generic

metamodels. For a C header file with preprocessor defines, for example, such
a metamodel will only specify that a DefineList contains an arbitrary num-
ber of DefineStatements having an identifier of type string and a value of
type string. This fact makes defining explicit constraints more chatty and error-
prone. For example, having a specific metamodel, a constraint on the debug-
level define may be formulated very concisely: copterSwHw.debuglLevel ==
Having only a generic metamodel, one needs to query the define value in a re-
flective way: copterSwHw.getPropByName ("debuglevel") .toInteger() == 1.
However, the simplicity of such a generic metamodel also has one benefit: it can
be reused across product line boundaries very easily.
Wrap-Up. To sum up, it is possible to map all configuration file types to
metamodels and the corresponding configuration files to models. Tooling for
conversion either exists or may be developed. However, combining all these single
technologies and tools in an ad-hoc manner for a specific product line in order to
check constraints is not appropriate. We will therefore present a corresponding
generic tool framework in the next section.



4 Product Line Constraint-Checking Framework

In this section, we present the PLiC' (Product Line Configuration) framework,
which allows for constraint-checking across product line boundaries and config-
uration file types, while minimizing the required modeling knowledge of product
line and configuration engineers. The PLiC framework is implemented as an
Eclipse extension and enriches the integrated development environment with
a builder component, which performs model conversion and validation in the
background when a configuration artifact changes within the workspace. Both
model converters (for specific configuration file types) and model validators
(for evaluating constraints of different checking languages) have been imple-
mented using the Eclipse extension point mechanism. Thus, additional config-
uration file types and constraint-checking languages can be implemented and
integrated easily.

We will describe the builder, the converters and validators that are already
available, and the extensibility of the PLiC framework later in this section. First,
we address the concepts that end users have to deal with.

4.1 End User View on the PLiC Framework

There are two roles of end users: product line engineer and configuration engineer
(cf. Figure 2). The former declares the set of possible configuration file types in
a so called PLiCFacade model (step 1) and implements the domain constraints
(step 2). The configuration engineer, in turn, creates the PLiClnstance model
(step 3), which specifies the locations of the configuration files. The PLiC frame-
work than permanently enforces the constraints on the configuration (step 4).

Product Line Product Line Configuration
— PLiCFacade Model .
(V)] creates . ! PLiClInstance Model .\ —(3) Creates—
specifies —_iﬁ Implicit and Explicit —J|i
Spec Configuration File Types ) ) ) _L“i ocates
\(2) o — ) (4) enforces Configuration Files ]
Cates 1 g ﬂ Constraints constraints
Product Line Configuration
Engineer I Converted PLiC Framework Converted I Engineer
Metamodels Models

Fig. 2. Product line engineer and configuration engineer using the PLiC framework.

The PLiCFacade model. Within the PLiCFacade model (cf. Figure 3), the
product line engineer declares three distinct sets of elements: the plug-ins re-
quired (PLiCPlugins), the configuration file types the product line can deal with
(ConfigFileTypes), and references to other sub—product-lines (PLiCFacadeRefs).
A PLiCPlugin has a unique ID to identify the plug-ins installed in the work-
bench. It may either be a Validator or a Converter. A Validator is parameter-
ized with the path to a file (or directory) containing the set of constraints to
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Fig. 3. First, the product line engineer defines a PLiCFacade model for each product
line. It declares the plug-ins used, the configuration file types available, and references
to other PLiCFacades. The configuration engineer, in turn, defines the corresponding
PLiCInstance model. It specifies the locations of the actual configuration files and
references to other PLiClInstances.

check. Converters, finally, exist in two flavors. SpecificConverters (in analogy
to Section 3.2) convert a specification file to a product-line-specific metamodel.
A GenericConverter simply provides a single, nonspecific metamodel (e.g., a
C preprocessor define metamodel), that can be used in various product lines.
Accordingly, ConfigFile Types are either specific or generic. In case of a Speci-
ficConfigFile Type, the engineer needs to provide the URI to a specification file
(XMLSchema, grammar, etc.) that may be transformed via the referenced Speci-
ficConverter. For GenericConfigF'ile Types, this is not necessary as the metamodel
of the referenced GenericConverter is generic and fixed.
The PLiClInstance model. In the PLiCInstance model, the configuration
engineer first references the corresponding PLiCFacade model it conforms to.
Then he declares all configuration files and their URIs within the file system
(ConfigFiles). Each ConfigFile needs to reference the ConfigFileType it corre-
sponds to. Finally, the configuration engineer draws the references to other used
PLiCInstances (sub—product-line configurations).

4.2 Builder

The builder plug-in works in the background and is invoked on each change in
the workspace. It keeps the created metamodels and models up to date, invokes
the constraint checks, and displays the check results. It builds all projects in a
linear order according to their project dependencies.

The builder achieves the actual conversion to metamodels and models by in-
voking the appropriate converter plug-ins. It stores the metamodels and models



in the file system and sets references to them using the theMetamodel and the-
Model member variables of all ConfigFileTypes and ConfigFiles (cf. Figure 3).
Doing so, the PLiCFacade and PLiClnstance models provide single entry points
for performing constraint checks. Eventually, the constraints checks referenced
in the PLiCFacade model (via Validator elements) are evaluated on the PLiCIn-
stance model calling the appropriate validator plug-ins. Subsequently, we will
describe the development of converter and validator plug-ins.

4.3 Converters

Converter plug-ins perform the actual conversion to metamodels and models
and need to implement certain interfaces. A generic converter needs to provide
one method for querying its fixed metamodel and one for converting a configu-
ration file to a model conforming to the metamodel. A specific converter works
similar, however has, as an additional parameter, in each of its methods the
specification file, which defines the product-line—specific metamodel.

Up to now, we have developed two generic converters and five specific con-
verters. The generic converters comprise a converter for files containing state-
ments of the form #define <ID> <Value> as output by the GNU compiler gcc
when invoked over the source code with certain parameters. Furthermore, we
developed a converter for property-value files, as common for Java.

The specific converters create metamodels for specification files in Ecore,
XMLSchema, and XText textual grammars. EMF already provides Java APIs
for this purpose, whose complexity is hidden behind the lean converter interfaces.
Furthermore, we developed a specific converter for pure::variants feature models.
We intentionally keep the metamodel generated from a feature model simple. In
particular, we ignore any hierarchical or dependency information of features and
only create one metamodel element for each feature, having the same attributes
as the feature. Actually, this is the only information necessary for constraint
checking, as the configuration editor of pure::variants will ensure that constraints
defined within the feature model itself are adhered to. Finally, we developed a
specific converter that generates a metamodel from KConfig files, which are used,
for example, to specify the configuration options of the Linux kernel.

4.4 Validators

A validator plug-in evaluates the constraints for a certain constraint definition
language. The corresponding interface comprises only one method, which receives
the PLiClInstance object to check and the file containing the constraint rules
and returns detailed information on warnings and errors that occurred during
validation of the models. Note that the builder (cf. Section 4.2) has enriched the
PLiCInstance object by setting the theModel property of each ConfFile element
to the built models. Doing so, the PLiClInstance provides a single entry point to
all generated models possibly subject to checking.

Currently, we provide two validator plug-ins, one for defining constraints in
the OMG Object Constraint Language (OCL) [13] and one for the XPand Check



language [21]. Examples for constraints will follow in the next section, where we
will present the application of the PLiC framework to the I4Copter.

5 Application Scenario: 14Copter

We have evaluated the approach and the PLiC framework with the I4Copter
product line described in Section 2. Six steps need to be performed in general
for any product line: (1) identify configuration file types, (2) select or develop
converters, (3) create PLiCFacade projects and models, (4) define initial con-
straints, (5) configure products using PLiClnstance projects and models, and
(6) constantly maintain and improve constraints during product line evolution.
1. Identify configuration file types. The first step is to identify the con-
figuration file types of each involved product line and configurable component.
Section 2 already comprises this task for the I4Copter. It comprises a hardware
product line tangled with an application logic product line, both configured via
header files. The operating system PXROS is configured via a configuration file
DSL, while the operating system product line CiIAO uses an XML dialect defined
in XMLSchema and a pure::variants feature model for configuration.
2. Select or develop converters. The initially developed converters (cf. Sec-
tion 4.3) resemble the needs of the I4Copter product line. We use the preprocessor-
based generic converter for extracting models from C header files. For converting
PXROS’ DSL configuration files, we have developed a simple grammar (less than
20 rules) for XText, which we use to derive a corresponding metamodel and a
parser for converting a configuration file into a model. For the task configuration
file specified in XMLSchema and the pure::variants feature model, we use the
corresponding specific converters as well.
3. Create PLiCFacade projects and models. At this point, the product
line engineer creates a new Eclipse PLiCFacade project (or converts the existing
project) for each product line. Each project needs to provide exactly one PLiC-
Facade model file describing the required converter and validator plug-ins, the
configuration file types, and possibly the location of corresponding specification
files, as well as references to sub-facades.
4. Define initial constraints. For constraint definition, the product line engi-
neer chooses (or possibly develops) validator plug-ins for the checking languages
to use. For I4Copter, we only make use of the XPand Check language, as the
tooling support in Eclipse is far better than for OCL. In particular, the XPand
editor has an excellent code completion facility, which can be configured to load
all generated metamodels. This eases the definition of constraints considerably.
Furthermore, we generate additional helper functions for easy navigation through
PLiClInstances and generated models. Thus, we can query, for example, the max-
imum priority of tasks defined in the CiAO feature model from the top level
I4Copter product line configuration using the following string leveraging code
completion support: ciAOInstance() .fmConf () .kernel .maxTaskPriority.
Figure 4 shows the XPand Check code necessary to encode the constraints
regarding the selection of a sensor using the SPI bus as motivated textually in



Section 2. The example constrains span define files, XML and DSL files, as well as
feature model configurations. Note that, for a consistent configuration, each con-
straint needs to evaluate to true. By initially interviewing the I4Copter experts,
we were able to find various other obligatory and recommending constraints.

instance.chk 53 =7

context PlicInstance WARNING "Accelerator present, you might also want to select the corresponding driver”:
lcopterSwHwInstance().hwHeaderFile().1sDefined("AC_PRESENT") ||
copterSwHwInstance().swHeaderFile().1sDefined("AC_DRIVER");

context PlicInstance ERROR "PXROS SPI Task must be selected when accelerator driver included":
'copterSwHwInstance().swHeaderFile().1sDefined("AC_DRIVER") ||
pXROSInstance() == null ||
pXROSInstance(). taskConfFile(). tasks.name.contains("SPITask");

context PlicInstance ERROR "CiA0 SPI Task must be selected when accelerator driver included”:
lcopterSwHwInstance().swHeaderFile().1sDefined("AC_DRIVER"Y ||
ciAO0Instance() == null ||
ciAO0Instance().x50ConfFile().ciaoApp. task.name. contains("SPITask"};

context PlicInstance ERROR "CiAQ0 priority inheritance must be selected when SPI Task configured":
ciADInstance() == null ||
ciADInstance().xSDConfFile(). ciaoApp.task. name. contains("SPITask™} ||
ciAOInstance(). fMConf().kernel_pipFeature.selected .
© selected Boolean - kernel_pip v

Fig. 4. Using the PLiC framework we specified the configuration dependencies of an
acceleration sensor in the XPand Check constraint language.

5. Configure products using PLiCInstance projects and models. Hav-
ing defined the PLiCFacade and the initial constraints, the product line config-
uration engineer can start configuring a product. This works via creating a new
PLiClInstance project in Eclipse and filling its PLiCInstance model, which basi-
cally contains the locations of configuration files in the file system. The builder
component now constantly observes the configuration files, converts them to
models on each change and checks the constraints defined in the previous phase
in a background process. If constraints evaluate to false, the textual messages
associated with them (the error and warning strings in Figure 4) are displayed
in the Eclipse problems view, and the configuration engineer gets immediate
feedback and advice.

6. Constantly maintain and improve constraints during evolution.
The more domain knowledge is encoded in formal constraints, the more power-
ful our approach is. When the product line engineer constantly maintains and
improves the set of constraints, and the configuration engineer contributes as
well with constraints gathered during configuration creation, our framework can
give helpful guidance and considerably shortens time and cost of product con-
figuration.

6 Results

Introducing our approach to the I4Copter was little effort. Setting up the PLiC
framework and performing an initial workshop for constraint mining and for-



mulation took less than a day. While, during the workshop itself, only few con-
straints where actually defined, the I4Copter engineers got a feeling for the poten-
tial of the approach and delivered several dozens of constraints in pseudo code
within the following days. We translated the pseudo code into XPand Check,
and—via learning by example—the I4Copter experts rapidly grasped the rele-
vant concepts and formulated the constraints in XPand Check themselves.

The recent introduction, however, impedes giving exact numbers on the
achieved improvements. Furthermore, the success of our approach relies on vari-
ous interdependent factors, such as the complexity of the product line, the quality
and number of constraints, and the duration and rate of product derivations, so
individual results are hardly transferable. We can, however, give anecdotal ev-
idence that led configuration engineers to the estimation that derivation time
(start of configuration to successful deployment) could be reduced by half with
the currently defined constraints. Each avoided compiler run due to a triggered
constraint saves up to three minutes, software unit testing ten minutes, avoiding
software and hardware testing in the testbed saves a test engineer several hours.

Locating the actual source of a configuration error can be even more time-
consuming. For example, choosing the SPITask but not the priority inheritance
mechanism in CiAO resulted in intermittent errors such as sporadically miss-
ing of deadlines and even fatal deadlocks for the quadrotor system. Detecting
and tracing back this behavior was a thankless, time-consuming task. Although
our constraint infrastructure could not prevent this misconfiguration when it
happened for the first time, the hereupon encoded constraint now directly trig-
gers at configuration time and gives helpful advice for correction, so that this
configuration error can no longer happen.

7 Discussion

In the following, we address several threats to the general applicability of our ap-
proach. Possible issues are the problem of semantic loss when converting among
metamodeling technologies, the modeling expertise required for our approach,
constraint evolution, and the relationship to generative product line approaches.
Semantic Loss. In principle, any formal, parsable file can be translated into
a model and its formal specification into a metamodel. However, even if a con-
verter is written very carefully, there will usually be semantic loss. UML’s MOF,
for example, is far more expressive than Ecore, which we use. But, for the pur-
pose of constraint checking, not all this semantic information is actually needed.
One can even intentionally keep a metamodel simple to simplify checking. As
mentioned, our metamodel converter for feature models does neither preserve the
hierarchy of features nor their dependencies. As the corresponding feature model
configuration tool already enforces these dependencies, converting and checking
them a second time would be unnecessary complicating and redundant.

Required Modeling Expertise. The configuration via PLiCFacade and
PLiClInstance models appears straight-forward to us, and, if desired, the same
information could also be entered via plain text files or a graphical user inter-



face. So, the only point where modeling expertise is actually needed to a certain
extent is for defining constraints. A product line engineer (but not the config-
uration engineer) has to learn the corresponding constraint language. However,
as argued in Section 5, languages such as XPand Check come with mature,
content-assisting editors minimizing the necessary learning efforts.

Constraint Evolution. If not maintained, the formal constraints defined with
our infrastructure will go out of sync with the actual dependencies within the
software over time. This is, however, a general problem when defining dependen-
cies, and needs to be ensured for dependencies within features in feature models,
as well as for dependencies between #defines (such as, #ifdef DEBUG #define
USE_SIMULATED_SENSORS ... #endif). Thorough development processes includ-
ing, for example, code reviews and configuration testing, may assist in keeping
the set of constraints consistent.

Generative vs. Constraining Approach. Using constraints for creating
valid configurations does not oppose to using generative technologies. Generat-
ing source code or some of the configuration files that the software requires is
often essential for efficient product derivation. We see our approach as a comple-
ment to the generative strategy in three cases: First, when fine-tuning at various
location becomes necessary that cannot be anticipated beforehand, second, when
multiple, orthogonal configuration files are needed that cannot be created out
of one another, and, third, when introducing a single top-level configuration file
that basically mirrors all configuration options on the lower levels does not scale.

8 Related Work

Related work can be found both in the field of constraint checking and in large-
scale product line configuration.

Considerable research has been conducted with respect to constraint enforce-
ment involving different types of product line models. In [5], OCL constraints
ensure that UML models enriched with feature templates result in well-formed
models when parameterized with valid feature model configurations. The au-
thors of [12] relate feature models and orthogonal variability models to each
other to facilitate automated reasoning on variability. Commonly, existing ap-
proaches restrain their focus on few dedicated model types and do not focus on
building a general infrastructure. The FAMA tool suite [1] is a notable exception.
It also provides an infrastructure for importing models and performing analyses
on them. In contrast to our approach, the internally used modeling format is not
based on generic metamodeling but on feature modeling. Whereas this consid-
erably limits the types of (configuration) files and models that can be imported,
the framework provides means for performing more stringent analyses, for exam-
ple, for satisfiability via SAT solving. It would be very interesting to integrate
validators of this kind also into our infrastructure for checking properties on the
corresponding subset of model types.

Currently, we evaluate all constraints each time a file is changed and its
model is rebuilt. There is research on efficient algorithms regarding incremental



consistency checking, where only those constraints are reevaluated that actually
may be affected by a change [7]. Up to now, we have not run into any perfor-
mance problems, the builder background process finishes in less than a second for
building all metamodels, models, and evaluating the constraints of the I4Copter.

There are several approaches that deal with multiple product lines and their
configuration. The Koala approach, which is applied in industry, provides for
configuration of large-scale product lines via an architectural description lan-
guage [14]. Approaches stemming from research, for example, use a combination
of class and feature modeling [15] or service-oriented abstraction [18] to config-
ure product lines. One of the main features of our approach is that it is agnostic
to the configuration file type used and can check constraints among arbitrary
configuration files as long as there exists a converter for this.

9 Conclusion and Outlook

With this paper, we have presented an approach and an infrastructure for con-
straint checking across configuration file types and product line boundaries. We
have evaluated our approach using the IjCopter product line, which yielded
promising results for its applicability in similar complex contexts.

As future work, we consider blurring the boundary between constraint-based
and generative strategies by not only checking constraints, but also actually
changing configuration values according to values in other configuration files.
This, however, requires further analyses and tooling. On the one side, it is nec-
essary to identify the cases where automatic changing of configuration values is
reasonable and comprehensible for the configuring engineer, and in which cases
it would rather lead to unforeseen side effects. Furthermore, this approach re-
quires converting the changes on model level back to the source configuration
files. This back-transformation is far more intricate and we need to analyze the
circumstances under which this can successfully be done.
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