A Wait-Free Queue for Multiple Enqueuers and
Multiple Dequeuers Using Local Preferences
and Pragmatic Extensions

Philippe Stellwag, Alexander Ditter, Wolfgang Schroder-Preikschat
Friedrich-Alexander University Erlangen-Nuremberg
Computer Science 4
Martensstr. 1
91058 Erlangen, Germany
{stellwag,ditter,wosch } @cs.fau.de

Abstract— Queues are one of the most commonly used data
structures in applications and operating systems [1]. Up-and-
coming multi-core processors force software developers to con-
sider data structures in order to make them thread-safe. But,
in real-time systems, e.g., robotic controls, parallelization is even
more complicated as such systems must guarantee to meet their
mostly hard deadlines. A considerable amount of research has
been carried out on wait-free objects [2] to achieve this. Wait-
freedom can guarantee that each potentially concurrent thread
completes its operation within a bounded number of steps. But
applicable wait-free queues, which supports multiple enqueue,
dequeue and read operations, do not exist yet. Therefore, we
present a statically allocated and statically linked queue, which
supports arbitrary concurrent operations. Our approach is also
applicable in other scenarios, where unsorted queues with stati-
cally allocated elements are used. Moreover, we introduce ’local
preferences’ to minimize contention. But, as the response times
of our enqueue operation directly depends on the fill level, the
response times of a nearly filled queue still remain an issue.
Moreover, our approach is jitter-prone with a varying fill level.
In this paper, we also address all of these issues with an approach
using a helping queue. The results show that we can decrease
the worst case execution time by approximately factor twenty.
Additionally, we reduce the average response times of potentially
concurrent enqueue operations in our queue. To the best of
our knowledge, our wait-free queue is the best known and
practical solution for an unsorted thread-safe queue for multiple
enqueuers, multiple dequeuers and mulitple readers.

I. INTRODUCTION

Multi-core platforms have arrived in the sector of embedded
systems, like Intel’s Atom series 300. This means that it is im-
perative to refactor and restructure existing software to further
increase the performance of future processor generations with
multiple cores. In the past, consecutive processor generations
have been used to integrate new technologies into software
and make them applicable in terms of performance. Now, the
free lunch is literally over [3], which means that software
developers must parallelize their software in order to achieve
further performance gains. But, in the embedded and real-time
sector, e.g., for robotic controls (RC), parallelization is even
more difficult than for the desktop area. But, missing this trend
would inevitably lead to a drop in the sales figures.

978-1-4244-4110-5/09/$25.00 ©2009 IEEE

237

motion program

&

"¢

preprocessor

¥
motion control : W N
| pO LOms,
interpolation u
.)
0
i

Dl [. \|
RC interfaces to clients reading out and visualizing active alarms

[

HMI,
Prep

HMI,

Servo

Fig. 1.

A. Our Motivation

Our ongoing attempts to parallelize a robotic control kernel
forced us to make the alarm handler thread-safe. Therefore,
we present a wait-free queue for multiple enqueuers, multiple
dequeuers and multiple readers. The alarm handler stores
alarms (e.g., drive errors) and transfers the alarm information
to units outside the robotic control (e.g., human machine
interface (HMI) or debugging interface (DI)), which do not
have any real-time constraints. The alarm information is stored
in a common unsorted queue, which is concurrently accessed.
As illustrated in Fig. 1, inside the robotic control (RC) there
are three concurrent threads (Prep, Ipo and Servo). In the
following we call these threads actuators, which are potentially
concurrent reading, enqueuing and dequeuing alarms. Clients
outside the RC only read-out the alarm handler’s queue. Every
thread consists of multiple processing station objects, which
realize the information flow of the motion program through the
RC kernel to the physical drives. A respective alarm reaction
(e.g., to stop the drives) is handled on the basis of the return
values of each processing station. But, the alarm information
is enqueued inside the processing station, which means that
the response time to synchronously triggering the alarm in-

SIES 2009

formation will delay the respective alarm reaction. Dequeue
operations are performed by an additional background task
inside the RC kernel, which can delete dedicated or groups
of alarm information. For example, a group of alarms can be
such alarms with a specific axis number.

Our solution of an optimized wait-free queue for multiple
enqueuers, dequeuers and readers is also applicable in other
concurrent scenarios, where statically allocated arrays are used
and where potentially high contention occurs.

B. Contribution

Previous approaches to synchronize linked queues with
locks can suffer from a whole host of problems. These can
include priority inversion, deadlocks, livelocks and starvation,
which are not tolerable for real-time systems. Furthermore,
we have to take into account the worst case execution time of
synchronization methods leading us to design a wait-free [2]
approach, which does not suffer from any of the mentioned
problems. But previous work in this area, as described in
Section VI, does not satisfy our real-time and/or scenario
specific requirements or is not applicable in practice.

The subject of this paper is a statically allocated and statical-
ly linked wait-free queue with local preferences. As actuators
firstly use their statically allocated local elements to trigger
alarms, which appear to be placed in a static array, we called
this behavior ’local preferences’. Furthermore, we must handle
both multiple enqueuers and multiple dequeuers, respectively.
We do not want any jitter-prone compare-and-swap based
retry loops or helping schemes, as presented in [4], [5], nor
(potentially expensive) kernel lock objects; our protocol needs
atomic test-and-set (TAS), test-and-reset (TAR), fetch-and-add
(FAA) and bit-test (BT) operations, which are available in
the most multi-core processors. Additionally, we present a
helping queue mechanism and an improved traversal algorithm
to reduce the time for traverse the alarm queue to find a free
element. This guarantees that enqueue operations have short
response times and hence the delay of the alarm reaction is
minimal. To the best of our knowledge, our approach has not
been previously studied.

C. Outline

The paper is organized as follows: Section II analyzes the
status quo solution and describes the requirements, which must
be fulfilled by a thread-safe alarm queue. In Section III we
present our approach for a data structure and its associated
wait-free protocol for concurrent operations on it. Section IV
describes a helping queue mechanism to improve our wait-
free queue in terms of determinism and performance. This
is followed by the description, discussion and evaluation of
an improved traversal algorithm in Section V. Related work
is shown in Section VI. And we summarize our results and
experiences in Section VIL.

II. ANALYSIS
A. Status Quo

Currently the data structure used by the alarm handler is
a linked queue. All queue elements are allocated statically

238

when the RC boots. In order to increase determinism and
avoid unnecessary overhead during the runtime, the system
internally maintains two queues: one with free elements and
one with the active alarms. When a new alarm is issued the
alarm handler takes a free element, fills it with the alarm
data and inserts it into the queue of active alarms. In order
to ensure consistency, the enqueue and dequeue operations
are performed with disabled interrupts. If no free element is
available, the new alarm will be lost. This only means that
the new alarm will not be displayed on the client-side (e.g.,
HMI or DI). As mentioned, the alarm reaction (e.g., to stop
the drives) will nevertheless be handled based on the return
value of the processing station. Currently, the alarm handler
stores up to 600 alarms, which is more than enough for our
robotic control.

Changes in the queue cause all active clients to re-read
the queue of active alarms in order to update their displays.
Dequeue operations, e.g., removing one specific alarm or
deleting all alarms from a dedicated station, can be performed
from any actuator in the RC kernel.

B. Requirements for Transition to SMP

The following points have to be considered for possible
solutions running on multiprocessor systems. They are the
basis of our solution presented in the next Sections.

Correctness. This seems to be a self-evident point, but
conventional locking strategies with mutexes, spinlocks or
semaphores suffer from multiple problems. The incorrect use
of locks can lead to unbounded priority inversion, starvation,
deadlocks, livelocks and race conditions. Additionally, locks
can lead to convoy effects and introduce jitter. Nonblocking
lock protocols, such as the priority inheritance or priority
ceiling protocol [6], [7], can result in high overhead regarding
time and space. The priority inheritance protocol [6] cannot
guarantee to be free from starvation.

Compatibility is split into two sub-items. First, the RC’s
internal compatibility with today’s interfaces in order to guar-
antee that all existing alarm handler calls are valid for the
SMP-compliant version. The second sub-item concerns the
external compatibility, which is much more important. Our RC
controls industrial production robots in the automotive indus-
try. To understand the requirement of external compatibility,
we have to keep in mind that this is what the customers will
see on their HMI. Hence, future software releases must be
totally backwards compatible to previous versions.

Scalability. In the future we expect a continuous increase
in the number of available execution cores. In order to take
advantage of this development, the number of actuators has to
grow as well. This requires a queue that is able to deal with
a growing number of enqueuers and dequeuers.

No assumptions about timing. The robotic control system
can trigger alarms asynchronously at any time. This means
that we cannot make any assumptions regarding the timing
information of when operations will actually occur.

Bounded response time. In hard real-time systems it
is essential to fulfill the timing specifications, which as a

SIES 2009

status bits, counter [semantics

init This bit reserves an alarm element for an enqueue
or dequeue operation.

use This bit indicates whether the alarm element is
’in use’ and contains valid alarm data.

del This bit indicates if the element has been ’logical
removed’ and is free for further enqueue operations.

r_cnt This read counter indicates if and how many
readers are attachted to this alarm element.

entire queue is statically linked, this means no pointers have
to be modified at runtime.

TABLE I
SEMANTICS OF THE STATUS BITS

consequence, makes the worst case execution time of any
operation an important parameter.

Minimal jitter. Jitter becomes noticeable when the axis
moves and is therefore a critical point. Hence, we have to
monitor the jitter introduced by our protocol.

III. A WAIT-FREE MULTIPLE ENQUEUERS MULTIPLE
DEQUEUERS QUEUE USING LOCAL PREFERENCES

A. Idea

Figure 2 gives an overview of the structure of our wait-
free alarm queue. A set of local elements is assigned to
each actuator; the allocation is done during the boot process
of the RC. These ’local queues’ are connected with each
other. The last element of an actuator’s queue points to the
first element of the next actuator’s queue. The last element
of the last actuator points to the first element of the first
queue. As a result we have one large queue with a statical
circular structure that can be traversed using the next pointers.
Traversal of the queue, e.g., to find a free element, always
starts at the first element of the corresponding actuator and
ends at the last element of the previous actuator. We call
this behavior ’local preferences’ of actuators. If actuators do
not exceed their local elements, there is no mutual impact of
other actuators. Furthermore, we have relocated the contention
from an ordinary dynamic queue, where enqueue and dequeue
operations induce contention on the queue itself, to the queue
elements. Our approach obviously induces no contention on
the queue, because it is statically linked. But, actuators can
dispute about the queue elements. As an example, if there
are only a few free elements, a scenario can occur where
actuators compete for one element. But if there are only a
few alarm elements in use, the level of contention on the free
alarm elements is very low. Hence, both the behavior of local
preferences and the statically linked structure of our queue
ensures minimal contention.

Each element has its own set of status bits (init, use, del),
which are used to coordinate and synchronize the parallel
disjoint-access [8] enqueue and dequeue operations on each el-
ement. Disjoint-access parallelization means that our enqueue
and dequeue operations concurrently work on disjunctive ele-
ments. The read counter r_cnt handles multiple simultaneous
read operations with potentially concurrent enqueue and/or
dequeue operations on one element. The semantics of the
status bits and the read counter are depicted in Table 1. The

239

1 T
1 I
:I—) alarm_data | init | use | del |r_cnt|next* '
1 1
IL> - - 1
1 alarm_data| init | use | del |r_cnt|next* :
i
I]
| I
| () ,
1 1
I] I
1 alarm_data| init | use | del |r_cnt|next* —:
1
! Actuator N |
1 1
1 [}
=> alarm_data| init | use | del [r_cnt|next* '—].
} 1
1 1
|L) alarm_data| init | use | del |r_cnt|next* :
[
1 I
1 (...) —‘I
| 1
1 1
I I
1 alarm_data| init | use | del |r_cnt|next* |
1
Fig. 2. Structure of our wait-free queue
B. Protocol

For synchronization and coordination of the queue we use
three status bits and one counter at each local element, as
described in the previous section. The following protocol guar-
antees consistent data during (potentially concurrent) enqueue,
read and dequeue operations.

1) Enqueue: The enqueue operation always starts travers-
ing the queue at the first element in the local queue of the
actuator issuing the alarm. It checks each element whether it
is freely available or marked for deletion. In the second case,
the element can be used, if no read action is performed on the
element.

The protocol steps are illustrated in Figure 3. At first, the
enqueue operation tries to reset the del bit using TAR. If it
succeeds, the element is marked for deletion. Then the enqueue
function must decide whether there are still actuators reading
this element or not. If there are readers still attached to this
element (r_cnt > 0), the enqueue operation sets the del bit
again using TAS and returns for further traversal of the queue.
However, if r_cnt is equal to zero, the new alarm data is written
to the element. After that, the alarm data is released by the
actuator. Therefore, the use bit is set and the del bit as well
as the inir bit are reset using one assignment to the binary
mask, which stores this three bits. This step represents the
linearization point [9] LP; of the enqueue protocol, because
at this point the changes become visible for all of the other

SIES 2009

failed

success

TAR(init)
atomic {
use=1;
del=0;
init=0;}

return

Fig. 3. Flow chart of the enqueue operation

actuators. Now, the changes are active and become visible to
the readers, which are notified using the observer pattern [10].

If the reset of the del bit fails at the beginning, the actuator
tries to set the init bit using TAS. If TAS fails, a concurrent en-
queue or dequeue operation is presently using this element and
the enqueue operation returns. If TAS succeeds, the actuator
checks (BT) as to whether the element’s use bit is set. If it is
not, the alarm data gets written without interleavings of other
operations on this dedicated slot element. The actuator then
releases the written data by setting the use bit and resetting
the del bit as well as the init bit — using an assignment as
mentioned above — and returns. If the wuse bit is set, the
element is still ’in use’ and the actuator resets the init bit
via TAR and returns. Then further traversal of the queue is
required. If the traversal of the queue ends up again at the
first local element again without finding a free element, then
the alarm is lost.

2) Read: Reading an element’s data requires consistent
alarm data. This is ensured by using the counter r_cnt for
each element, it is incremented using FAA at the beginning
of each read operation and decremented using FAA after the
operation has been performed. This counter ensures that the
element will not be overwritten by an enqueue operation until
the last client has finished reading the data. Data is only read
if the del bit is not set and the use bit is set. The first bit-tests
on the use and del bits ensure that continual read operations
cannot influence a concurrent enqueue operation on an element
that has already been removed. The read protocol is shown in
Figure 4.

3) Dequeue: The dequeue function deletes alarms from the
queue. Therefore, dequeue has to traverse the queue in order to
find alarms to be deleted. To decide whether an alarm should
be removed or not, dequeue compares its parameter values,
e.g., alarmID or stationID, with the data stored in alarm_data.

The following protocol steps are visualized in Figure 5. First
of all, the dequeue operation checks the use bit. If it is set,

240

not

T BT (usr—.D
set |

set
Br(del)

not set ‘

not set

set

»(__FAA(r_cnt,-1)
returD

Fig. 4. Flow chart of the read operation

the dequeue operation checks whether the deletion criterion
matches its parameter values. If the parameter values do not
match, the dequeue operation returns. In the case of a match,
the actuator tries to set the init bit using TAS. If it fails, the
element is reserved by a concurrent enqueue or dequeue opera-
tion. Therefore, the dequeue operation returns. If the init bit is
successfully set, the actuator has to check again for a matching
deletion criterion. This is because concurrent operations can,
in the meantime, potentially change the element’s data. If the
parameter values do match again, the actuator atomically resets
the use bit and sets the del bit using one assignment to the
binary mask, which stores these two bits. This represents the
linearization point L P, because at this point the state changes
from ’in use’ to ‘removed’. Now, no further action is needed
and the dequeue function returns. If the parameter values no
longer match, the actuator resets the init bit via TAR and
returns.

C. Verification

We implemented our protocol in PROMELA and validated
our state transitions with the SPIN model checker [11]. All
possible states for each alarm element are depicted in Table II.

We will now describe the possible states 1. to 16. of an
alarm element and discuss why invalid states cannot occur.
Firstly, there is an inital state 1., where all status bits and the
read counter r_cnt are at zero. If an element is in the inital
state, the element is free. Read operations on free elements
were rejected by the first bit-test and hence cannot change
the state of the element. Hence, also state 9. cannot occur.
Dequeue operations on a free element cannot change the state
of this element, because the first bit-test will fail, if the use
bit is not set. Once, an alarm element has left the inital state,
the inital state cannot occur twice.

SIES 2009

set
set

{ check whether the
—

! deletion criterion of
! _the element is fulfilled

false

failed

success

 check whether the |
! deletion criterion of ;
the element is fulfilled

1
TP e R ey v 3

c
false
e

Fig. 5. Flow chart of the dequeue operation

rent | init | use | del | short state description

1. 0 0 0 0 inital state

2. 0 0 0 1 invalid state

3. 0 0 1 0 element (elem.) in use

4. 0 0 1 1 invalid state

5. 0 1 0 0 elem. in process by enqueue/dequeue
6. 0 1 0 1 elem. is free for overwriting

7. 0 1 1 0 before L P> in dequeue

8. 0 1 1 1 invalid state

9. >1 0 0 0 invalid state
10. >1 0 0 1 invalid state
1. >1 0 1 0 reading an element’s alarm data
12. >1 0 1 1 invalid state
13. >1 1 0 0 elem. in process by enqueue/dequeue
4. >1 1 0 1 readers still reading a removed elem.
15. >1 1 1 0 before L P> in dequeue
16. >1 1 1 1 invalid state

TABLE II

STATES OF AN ALARM ELEMENT

The invalid state 2., where only the del bit is set, cannot
occur because if a dequeue operation was successfully per-
formed, the element is always free for overwriting — this is
state 6. If the atomic step LP» (see Figure 5) of the dequeue
operation is performed, the init bit is always set. Hence, this
state cannot occur.

If an enqueue operation was successfully executed, the
element’s use bit is always set — this is state 3.

The invalid state 4. cannot occur because the atomic lin-
earization points LP; and LP; (see Figures 3, 5) always set
the use and del bit to different values. LP; and LP;, cannot be
interleaved as the init and del bits ensure that parallel enqueue
and dequeue operations are mutually excluded (at the element
level).

If an element has state 5., an enqueue or dequeue operation

241

has reserved this element by setting the inif bit. An element has
state 6., if a dequeue operation was successfully performed.
If a dequeue operation is located in front of the linearization
point L P», the init and use bit are set and the del bit must be
zero — this is state 7.

State 8. is invalid. It cannot occur for the same reason that
state 4. cannot occur.

If actuators are presently reading the alarm data (r_cnt >
1), the element’s state is 11.

If an element is removed (del=1 & init=1 & use=0) and
readers are still attached to this element (r_cnt > 1), the
element resides in state 14.

The descriptions for the remaining states are identical to the
explanations above.

D. Evaluation

For a preliminary evaluation of our protocol, we measured
the response time in processor cycles against the fill level
of the alarm queue. Furthermore, we compared our wait-free
solution to the status quo implementation in a sequential test
scenario.

1) Test Setup: As hardware environment we used an octa-
core PC with two Xeon E5440 quadcore processors, running
at a 2.83 GHz clock frequency, 256 KB L1 cache per core for
instructions and data, 6 MB L2 cache per core pair (that is
12 MB per CPU) and 1333 MHz FSB.

Today, our RC kernel running on different powerful Intel
processors. Hence, we are using two of Intel’s E5440 for an
appropriate test environment, even though a Xeon processor
creates too much heat to integrate it into our target system.

2) Testing Method: We implemented a test environment
using Windows XP on the hardware platform mentioned
above. In this test environment we triggered highest priority
threads on the basis of the multimedia timer with a minimum
resolution of 1 ms. We validated our implementation with
Intel’s Thread Profiler.

To interpret the results shown in the next section, we have
to keep in mind that the cores, which execute our periodic
threads, do not have to deal with incoming interrupts. This is
because we have set the IntAffinity boot option in boot.ini to
force interrupts to the highest numbered execution core, which
we do not use. The jitter shown in the next section arises from
cache effects. Furthermore, it depends on the strategy as to
how changes in the cores’ caches are written back (e.g., write-
through, write-back). We analyzed the influence of Windows
in our test scenarios, which is insignificant.

For collecting our measured values, we used the 64-bit
model-specific register RDTSC [12]. Because of the out-of-
order execution of the E5440 processors, we had to flush the
processor pipeline before reading out RDTSC to get suitable
measured values. The CPUID instruction was used to flush
the pipeline, which introduces some jitter (min = 220 cycles,
mazr = 284 cycles, 0 = 12 cycles, ¢, =~ 0.05 cycles;
evaluated with 1,000 test runs) against what is remaining in
the pipeline; where o stands for the standard deviation and ¢,
quantifies the coefficient of variation.

SIES 2009

3) Test Scenarios, Results and Discussion: Figures 6(a) and
6(b) show the results of our analysis. We performed two tests
using different scenarios. For every test we use 600 global
elements. In the following, we use the acronym |E;| for the
number of local elements and |E,| for the number of elements
for the entire queue.

The first scenario compares the sequential status quo im-
plementation with our wait-free queue. We sequentially en-
queued alarms until no free element was left in the queue
and measured the response times with increasing fill level.
As visualized in Figure 6(a) the status quo solution shows
some jitter but has quite a constant response time, which
is independent of the fill level. In contrast the new SMP-
aware alarm queue shows that the response time scales linearly
according to the fill level. Since the queue is always traversed
starting at the first local element, with each iteration one more
step is needed to find a free element.

The second scenario shows six concurrent enqueue oper-
ations working on our wait-free queue. For this purpose we
instantiated six highest priority threads on different execution
cores and concurrently enqueued alarms until no free element
was left in the queue. We measured the response times with
increasing fill level, as shown in Figure 6(b). It can be seen that
the enqueue operations have no influence on each other, while
they are using their local elements. All six threads operate at
about the same speed and hence only trigger alarms in their
local queue elements. When the fill level of the queue reaches
about 98 percent, the contention on the last remaining free
elements increases because a few actuators have exceeded
their local queue and a few have not. This leads to the
outliers, because now actuators with an exceeded local queue
must traverse the entire queue in order to find a free alarm
element. Furthermore, the interchange of data through the
cache hierarchies and the main memory induces an additional
overhead. All of these increase the response times.

There are also several scenarios for measuring the response
times of dequeue operations started from a completely filled
queue. Based on its parameter value the dequeue function
decides whether an element has to be removed or not, as
mentioned in Section III-B.3. Since the dequeue function does
not affect the alarm reaction, we will not consider this use case
any further.

E. Conclusion

The results in the previous section show that our wait-
free solution scales linearly with the fill level. This of course
depends on the fragmentation of the queue. As Jayanti et
al. [1] have already argued for their implementation of a
wait-free (FIFO) queue, the use of helping schemes also
interchanges time and space complexity — their solution
also scales linearly. Due to fact that we did not choose a
complex algorithm to traverse the queue, there is still room
for improvements in terms of response time and determinism
in our solution.

Our algorithm mostly fulfill the requirements described in
Section II-B. We checked the state transitions of our protocol

242

80000

Status Quo

Wait-Free -

70000

60000 [e
i ;
@ /
(>_)‘ i H H K H H
& 50000 [— O N S S— —
o
o
£
5 40000
£
'_
[0}
1)
c
S 30000
1]
(0]
[an
20000
L e - —

0
0% 20% 40% 60% 80%

Fill Level of Alarm Queue

100% 120%

(a) Sequential test case to compare the status quo alarm queue to our wait-free
solution using only one highest priority thread; |E;| = 600, |Eq4| = 600

500000 ‘
enqueuel ——
450000 -
400000 -
o 350000 |- — T — 13—
o | | | |
[$]
>
O
S 300000
o
O b
£]
® 250000 | e
£ |
[1
Q i
L 200000 b
o
o
7]
]
4000 [
100000 f- — — e — e
: : : : o
BO0OO |- — A —] S—

0
0% 20% 40% 60% 80%

Fill Level of Alarm Queue

100% 120%

(b) Test case of concurrent enqueue operations with six highest priority threads
running on different execution cores; |E;| = 100, |E4| = 100 * 6 = 600

Fig. 6. Results of our two test scenarios

SIES 2009

using the SPIN model checker [11]. Furthermore, our protocol
does not suffer from priority inversion, deadlocks, livelocks
and starvation since this is inhibited by the wait-free prop-
erty [2]. Because we are dealing with a system operating under
hard real-time constraints an upper limit for the execution time
is essential. This is guaranteed by the fact that incoming alarms
can be rejected without influencing the real-time system if the
alarm queue is full. But jitter is still an issue with our solution
since it can only be determined in an experimental manner
and also depends on the fill level of the queue. Moreover,
the response times for enqueue operations on a (nearly) filled
queue are still too expensive for our use case.

IV. HELPING QUEUE
A. Motivation

As the response times directly depend on the fill level
of the alarm queue, there are some issues which we take
into consideration in this section. If the fill level varies, the
response times of enqueue operations also vary. Moreover, the
fragmentation of the queue is also an issue and also leads
to varying response times because of the linear traversal of
the queue. If the alarm queue is nearly full, the response
times increase exponentially because of contention regarding
the last free elements. And the response times of enqueue
operations on a full queue take up a lot of time, since an
actuator must traverse the entire queue just to identify that
it is full. In Figure 7, a situation is illustrated, where six
actuators performs 80 percent enqueue operations and 20
percent dequeue operations with groups of alarm elements.
On the average, one performed dequeue operation removes
3.5 percent of all of the used elements. The response times on
the y-axis depict the response times for enqueue operations
only. The downward outliers come from performed dequeue
operations, which remove elements in favor of further enqueue
operations. This means that the costs for traversal of the alarm
queue by further enqueue operations are influenced by dequeue
operations.

To a certain extent, the jitter and the response times for
enqueue operations on a nearly full queue are a problem. This
is because the enqueue operation delays the respective alarm
reaction. Therefore, in this section we present a wait-free help-
ing queue mechanism on the basis of our solution described
in Section III. Our helping queue mechanism minimizes the
costs for traversing the queue in order to find a free element
as well as the varying response times of enqueue operations.

B. Idea

Each local alarm queue is separated into two halves and for
each half of the local alarm queue we save the number of free
elements in free_at_top and free_at_bottom respectively. The
size of both halves can differ by one alarm element, if the size
of the local alarm elements is an odd number. We use a stati-
cally allocated array with alarm elements for each actuator and
abstain from connecting the arrays of alarm elements among
each other in a circular structure, as illustrated in Figure 8.
Instead of this, one helping queue element is assigned to each

243

700000 ‘
enqueuel
enqueue2 -------
enqueued --------
enqueuesd -
600000 |- enqueues ———— B A
enqueueb -------
500000 - e
[} H '
Ko}
o
>
O
T 400000 =
o :
£
[0]
E
=
o 300000 [e
(2]
@ :
<)
o
(7]
(0] :
[an :
200000 [;
100000 |- :
0
0 200 400 600 800 1000
Time [t] in samples
Fig. 7. Test case where six actuators perform 80 percent enqueue and 20

percent dequeue operations; |E;| = 100, |E4| = 100 % 6 = 600

actuator, which stores a local_queue* pointer to its local alarm
element array, a constant integer variable local_middle for the
first element of the second half of the alarm array, the integer
variables free_at_top and free_at_bottom as described above
and a pointer next* to the helping queue element of the next
actuator. The next pointer of the last actuator’s helping queue
element statically points to the first actuator’s helping queue
element. Hence, we have a helping queue with a static circular
structure that can be traversed using their next pointers.

C. Protocol

To enqueue an alarm, the actuator must traverse the helping
queue in order to find a free alarm element. Each actuator starts
traversing the helping queue at its local helping queue element
to ensure our local preferences and to avoid contention.
For each helping queue element the actuator consecutively
checks the two counters free_at_top and free_at_bottom. If both
counters are less or equal to zero, the actuator continues to
traverse the helping queue by using the next pointer. If the
helping queue is traversed and ends up at the first element
again without finding a free element, the alarm is lost. If the
actuator found a counter which is greater or equal than one,
then it has found a potentially free alarm element. Then the
actuator decrements this counter by using FAA. If the new
value of the counter, which is returned by FAA, is greater or
equal to zero, then the actuator has found a free element. The
decremented counter ensures that the actuator has reserved

SIES 2009

i 1
: Actuator 1 A local_queue* | !
| :
! . ’ - o free_at_top 1
1 /1 1 I
1| alarm_data | init | use | del [r_cnt B
1 T 7 T local_middle 1
: alarm_data | init | use | del |[r_cnt :
I

1 (..) :
1 1
I 1
1 1

local_queue*

i
3 free_at_top

alarm_data | init | use | del |r_cnt

alarm_data | init | use | del [r_cnt

1
1
1
[}
1
[}
1
1
local_middle |
1
1
1
1
1
I
1

Fig. 8. Structure with our wait-free helping queue

one of the free elements on the respective half of the alarm
element array. If the returned value of FAA is less than zero,
the actuator must increment the counter back via FAA and
continues traversing the helping queue. If the actuator has
decremented a counter and the return value of FAA is greater
or equal one, then it must traverses the half of the respective
alarm queue as described in Section III to find the free alarm
element.

To ensure that the number of free elements in the alarm
queue is represented by the respective counters of the helping
queue elements, the dequeue operation described in Sec-
tion III-B.3 must increment the respective counter using FAA
after an element is removed by atomically setting the use bit
to zero and the del bit to one. This is L P, in Figure 5. This
means that after a dequeue operation has removed an alarm
element at the alarm queue level, the alarm element is released
at the helping queue level (see Figure 9).

D. Validation

Since we are using FAA to increment and decrement the two
counters free_at_top and free_at_bottom, a race situation cannot
occur at these state transitions. Each counter represents the
number of free elements for a dedicated half of a local alarm
array. For enqueue operations we use the counters to decide
whether there is a free alarm element or not. For a successful
dequeue operation we increment the respective counter after
the linearization point L P, has been executed. This is because
new enqueue operations can potentially enter a half of the list
as they decremented the respective counter and FAA returns
the new value with a number greater or equal zero. The alarm
element must have already been removed so that the enqueue

244

o penET -
L

CaP -,
Actuator 1 ,7,* | Actuator N ™,
LY LYY
T: free_at_top T: free_ at_top
Helplng M: local middle M: local middle
Queue B: free at_ bottom B: free at bottom
Level:
T T
_____ . & - | [| -
[[
Alarm
Queue ulflufu ufu| f|f
Level T T
M M
L A J| |L A J
1 T Ll |
T=1 B=0 T=0 B=2

u: used f: free

Fig. 9. A possible state of the alarm and helping queue.

operation can use it. Therefore, we must remove the element
by executing LP, before we increment a helping queue
counter. Hence, the step of atomically incrementing a helping
queue counter in the dequeue function is the linearization point
for a helping queue element, because at this point we release
the removed alarm element for further enqueue operations.

The helping queue procedure ensures that if an enqueue
operation has decremented a helping queue counter and FAA
returns a new value which is greater than zero, then it is
guaranteed that there is at least one free element for the
enqueue operation at the respective half of the alarm array.
A possible scenario is depicted in Figure 9.

If an enqueue operation traverses the entire helping queue
without finding a counter which is greater or equal to one,
then the alarm is lost.

E. Evaluation

In this section we discuss whether we have to take into
consideration the issues mentioned at the beginning in Section
IV-A. We minimized the time involved for traversing the alarm
queue as described in Section III as we integrate two counters
for each helping queue element. These counters count the
free alarm elements in the local alarm array. Additionally,
traversing the helping queue elements decreases the time for
traversing the entire alarm elements. As depicted in Figure 10,
we also reduce the contention on the last remaining free
elements. On the other hand, traversing the helping queue also
results in additional overhead.

Figure 10 shows that actuators initially fill the first part of
their local alarm arrays until the fill level of the entire alarm
elements reaches 50 percent. At this point the helping queue
protocol realizes that the first halves of the alarm arrays are full
(free_at_top == 0) and now starts to use the second halves of
the alarm arrays as the free_at_bottom counters are still greater
than zero. The significant reduction in the response times of
50 percent fill level of all alarm elements mainly comes from

SIES 2009

45000 -
enqueuel
enqueue2 -------
enqueued --------

40000 [enqueu@s -~
enqueueb ———-—
enqueueb -------

35000 ‘ ‘

3
< 30000
>
O
2
O 25000
£
[0]
E
= 20000
[0]
(%]
c
S
@&
& 15000
10000
5000

20%

40% 60% 80%
Fill Level of Alarm Queue

100% 120%

Fig. 10. Test case with helping queue, where six actuators perform enqueue
operations; |E;| = 100, |E4| = 100 % 6 = 600

the time involved with traversing the alarm array as described
in Section III. This is because now every enqueue operation
starts to traverse the alarm array starting from local_middle. If
the fill level of all alarm elements reaches about 95 percent,
contention on the counters as well as the alarm elements
occurs. After the fill level reaches about 100 percent, the
average response times reach 226 cpu cycles — as shown
in Figure 10, which are required to traverse the full helping
queue once.

F. Further Partitioning

Our approach to partition each local alarm queue is not
limited to two parts. It is straightforward to partition each
local queue up to | E;| parts (in the most finely-grained case).
But, it is a tradeoff between reducing the relatively high time it
takes to traverse the alarm queue and the additional (relatively
low) costs for traversal the helping queue. In the worst case,
if we partition each local alarm queue in |E;| parts, which is
element-wise, the costs for traversing the helping queue are
approximately identical to those when using the alarm queue
as described in Section III without helping queue.

G. Optimization of the Search Path

In this section we show a mathematical approach to deter-
mine the optimal number of partitions. It is assumed that the
number of actuators A is known as well as the number of
alarm elements |E,| that are needed. For our use case A =6

245

and |E,| = 600. Neglecting the hardware costs at this point,
we further assume that the costs for traversing one element at
alarm queue level are 1 and the costs for checking one partition
for free alarm elements at helping queue level are also 1.

Additionally, we establish the following acronyms for the
two unknowns:

o p: Number of partitions for each local alarm queue
e |E,|: Number of alarm elements per partition

It is imperative:

Axpx*|Ey| = |Ey] (1)

As equation 1 shows, |E,| is the worst case search path to
find a free alarm element without using a helping queue. The
worst case is, if there is only one free alarm element left and
we must check every alarm element to identify whether it is
free.

Now, we must determine the unknowns p and |E,| so that
we minimize the search path for finding a free alarm element.
The costs for this worst case search path with helping queue
are 0 : Axp+ |Ep|, where A *p stands for the worst case
costs for checking every partition for free elements at the
helping queue level and |E,| stands for the worst case costs
for traversing the alarm elements inside the partition.

The minimum of the worst case search path is the equation
of the costs for checking every partition for free alarm ele-
ments A x p and the number of alarm elements per partition
|Ep| (see equation 2).

Axp=|Ep| 2)
Solving equation 1 for |E,| yields:

P Axp

Inserting the result of equation 3 into equation 2, we get:

3)

| E,|
A =9 4
P=o » 4)
Now, we can also solve equation 4 for p:
|Eg|
p=1{5] (5)

With this result of equation 5, we can determine p and | E,|.
The following steps are inevitable for our particular use case:

D p=[{%]=1

2) Insert p in equation 3: |E,| = 89 = 25

6x4
3) Determine the minimal worst case costs for p = 4 and

|E,| =25: Q2 =6%4+ 25 =49'

If we shift the values of p and |E,|, e.g., p = {5,3} and
|E,| = {20, 33}, the costs increase © = {50,51} > 49. Note
that for p = 3 and |E,| = 33 there are only 594 alarm elements
available.

Isee also Figure 13

SIES 2009

fill
sequence:

|

local alarm queue

Fig. 11. Improved traversing sequence in turn from left/top and right/bottom
for each half of the local alarm queue

H. Conclusion

Our wait-free helping queue approach is an extention for our
wait-free queue mentioned in Section III. It is an improvement
relating to determinism and performance. Indeed, the response
times still depend on the fill level of the alarm queue since
we must traverse a half local alarm queue in order to find a
free element, but the costs therefor were reduced dramatically.
Additionally, we significantly reduced the jitter induced by
varying fill level. By reducing the contention by dividing each
local alarm queue into two halves, we have also reduced the
cache-based outliers. Consequently, we also decrease the costs
for enqueue operations, if the alarm queue is full.

Moreover, the helping queue mechanism allows us to divide
each local alarm queue into arbitrary parts. This means that we
can raise the costs for traversing the helping queue and reduce
the costs for traversing the alarm queue and hence minimize
the accumulated costs for enqueue operations.

V. IMPROVED TRAVERSAL ALGORITHM
A. Motivation

In Section IV we have shown a mechanism to modify the
worst case execution time to find a free alarm element. This
is done by reducing the search path. In this section we discuss
a simple algorithm to traverse the alarm queue to find a free
element. This does not change the worst case execution time,
but it reduces the average overhead for traversing the alarm
queue.

B. Idea and Protocol

The idea is straight forward. Each actuator performing an
enqueue operation traverses the alarm queue in turn from the
left and the right in order to find a free element. Note that
the alarm queue is traversed after the actuator has found a
free element by using the helping queue as described in the
previous section. Assuming that only one actuator enqueues
alarms, then each half of the local alarm queue is filled as
illustrated in Figure 11. We do not make assumptions about
the preference of actuators, which half of the local alarm
queue is used first — which means that we have numbered
the filling steps from 1. to 4. On the average this traversal
algorithm leads to a reduced traversal overhead for the alarm
queue, since actuators firstly use their local preferences and
now filling each half of the local alarm queues from the
left and from the right in turn. However, in the worst case,
an actuator must nevertheless traverse the complete half of
the local alarm queue in order to find a free element. This

246

30000

enqueuel H
enqueue2 ------- :
enqueued -------- :
enqueue4 ;
enqueueb ———-—
25000
3
< 20000
>
O
o
o
(&]
£
o 15000 e
E
'_
[0]
(2]
c
S
@
Ko 10000
5000
0 n‘ lIrlIl“'II’lT
0% 20% 40% 60% 80% 100% 120%
Fill Level of Alarm Queue
Fig. 12. Test case with helping queue and improved traversal strategy; six

actuators perform enqueue operations; |E;| = 100, |E4| = 100 % 6 = 600

represents the same effort as incurred when using a linear
traversal strategy. This improved traversal algorithm needs an
additional bit per actuator to determine the traversal direction;
this does not involve additional space or time overhead.

C. Evaluation

Figure 12 shows the identical concurrent test scenario as
described in Section IV-E with our simple improved traversal
algorithm. If the fill level of the entire alarm queue reaches 50
percent, which means that the first halves of the local alarm
queues are full, further enqueue operations of actuators use
the second half of each local alarm queue. The strategy as
to how the elements of each half of the local alarm queue
are alternately used occurs from the left/top and from the
right/bottom. As we can see in Figure 12, until the alarm queue
reaches an fill level of approximately 81 percent, actuators
only use their local alarm elements for triggering alarms. After
the alarm queue has been filled to about 81 percent, contention
on the last free alarm elements increases. Since we do not use
the linear traversal mechanism as described in Section IV the
contention is obviously a little bit lower. Now, the accumulated
response time of each actuator has been halved as illustrated
in Figure 10. For this reason the possible different runtimes
of each actuator are of more significance; hence we moved
the cache-based outliers a little feed forward.2 However, the

Zsee also Figure 13

SIES 2009

18000 -
enqueuel
enqueue2 ------- ; ;
enqueued -------- ‘ ‘ !
16000 [enqueued - ot A
enqueues ———- ‘ ‘ }
enqueueb ------- | i !
14000 ‘ ‘ ‘ -
@ | |
5 12000 [o e E B
O
2 | | e
O 10000 [frooeeeeeens e S =
£ ‘ ‘ Pl
o .
£ i : o
Lo 8000 [R i ol
[0} i : ot
2] o
c i
S no
@& | | Lo
g eop I

4000 fooe — b

2000 -
o] FETI. [[RPN S e s
0% 20% 40% 60% 80% 100% 120%

Fill Level of Alarm Queue

Fig. 13. Test case with helping queue, improved traversal algorithm and local
alarm queue divided into four parts, where six actuators perform enqueue
operations; |E;| = 100, |E4| = 100 * 6 = 600

average response times are reduced by approximately 50
percent in the best case compared to Section IV.

Actuator enqueue? and enqueue3 are obviously slower than
the others, because their response times fall to the overhead
of the helping queue protocol after their last outliers by
approximately 91 percent.

D. Conclusion

In real-time systems developers must ensure that resources
are not exhausted. In our RC kernel the alarm queue has
approximately 20 percent above the capacity of the most
common failure scenarios. New incoming alarms are only
rejected under worst case conditions. In this section we had to
take into consideration the average response time for triggering
alarms. This ensures that the respective alarm reaction —
which is triggered on the basis of the return values of the
processing stations — has the shortest possible delay. In
comparision to a linear traversal mechanism as described in
the previous section, this improved traversal strategy reduces
the average response times by approximately 50 percent in the
best case. In the worst case we do not perform as well as a
linear traversal algorithm.

If we divide each local alarm queue into more than two parts
(e.g., four parts as illustrated in Figure 13), we can reduce
the costs of our approach for a wait-free alarm queue so that
on the average it is faster than today’s sequential solution

247

as illustrated in Figure 6(a). The cache effects are caused
by the hardware design (e.g., cache synchronization over 2nd
level cache or over main memory) and cannot be completely
eliminated if contention occurs.

VI. RELATED WORK

Lamport developed the first single writer and multiple reader
algorithm without locks in [13]. However, his approach is
not wait-free [2] and hence does not satisfy our real-time
requirements. Lock-freedom only guarantees that always some
process completes its operation within a bounded number of
steps on a lock-free data structure. This can lead to starvation
of other processes. Also other nonblocking approaches of
(FIFO) queue algorithms, such as [5], [14]-[17], only guar-
antee lock-freedom.

Furthermore, the obstruction-free approach from Herlihy et
al. in [18] also does not satisfy our real-time requirements.
Obstruction-Freedom only guarantees progress ’in isolation’
of all other processes.

There are only a few wait-free queues, such as [1], [19],
[20]. Tsigas et al. — who proposes in [19] wait-free queue
class implementations for synchronization of real-time and
non-real-time threads in an unidirectional manner. Therefore
their generic queue implementations use the priorities of the
scheduler to guarantee progress. In [20] David presented a
single enqueuer, multiple dequeuer approach of a wait-free
queue implementation. Jayanti et al. showed in [1] a multiple
enqueuer and single dequeuer scenario for wait-free queues
and stacks. However, our scenario requires multiple enqueuers
and multiple dequeuers, which is not satisfied by [1], [20].
Furthermore, FIFO queues do not address our concerns.

VII. SUMMARY

We designed a wait-free solution of a queue to handle mul-
tiple concurrent enqueue and dequeue operations using local
preferences to reduce contention. Additionally, we presented
a helping queue mechanism to significantly reduce the costs
to traverse the entire queue in order to find a free element.
Furthermore, we presented a simple traversal algorithm, which
— in the best case — results in significantly shorter response
times.

All of this allows us to extend the alarm handling in our
RC to SMP systems without requiring much further effort. The
wait-freedom property ensures that developers do not have to
worry about lock orders to avoid deadlocks and additional
protocols to avoid unbounded priority inversion scenarios.
The wait-freedom property also guarantees that each actuator
makes progress at every time.

This makes our approach the best known and practical solu-
tion for an unsorted thread-safe queue for multiple enqueuers,
multiple dequeuers and multiple readers.

REFERENCES

[1] P. Jayanti and S. Petrovic, “Logarithmic-time single deleter, multiple
inserter wait-free queues and stacks,” in Proc. of 25th International
Conference on Foundations of Software Technology and Theoretical
Computer Science, pp. 408-419, 2005.

SIES 2009

[2]

[3

=

[4]

[6]

[7]
[8

[t

[9

—

[10]

[11]

M. P. Herlihy, “Wait-free synchronization,” in ACM Transactions on
Programming Languages and Systems, vol. 11, no. 1, pp. 124-149,
January 1991.

H. Sutter, “The free lunch is over,” in Dr. Dobb’s Journal, vol. 30, no. 3,
March 2005.

M. M. Michael, “ABA prevention using single-word instructions,” IBM
Research Division, RC23089 (W0401-136), Tech. Rep., January 2004.
P. Tsigas and Y. Zhang, “A simple, fast and scalable non-blocking
concurrent FIFO queue for shared memory multiprocessor systems,”
in Proc. of the 13th ACM Symposium on Parallel Algorithms and
Architectures, pp. 134-143, 2001.

R. Rajkumar, L. Sha, and J. P. Lehoaky, “Real-time synchronization
protocols for multiprocessor,” in Proc. of Real-Time Systems Symposium,
pp. 259-269, 1988.

V. Yodaiken, “Against priority inheritance,” FSMLabs, Tech. Rep., July
2002.

A. Israeli and L. Rappoport, “Disjoint-access-parallel implementations
of strong shared memory primitives,” in Proc. of Symposium on Princi-
ples of Distributed Computing, pp. 151-160, 1994.

M. P. Herlihy and J. M. Wing, “Linearizability: A correctness condition
for concurrent objects,” ACM Trnasactions on Programming Languages
and Systems, vol. 12, no. 3, pp. 463-492, 1990.

E. Gamma, R. Helm, and R. E. Johnson, Design Patterns. Elements of
Reusable Object-Oriented Software. Longman, Amsterdam: Addison-
Wesley, March 1995.

G. J. Holzmann and D. Bosnacki, “The design of a multi-core extension
of the SPIN model checker,” in IEEE Trans. on Software Engineering,
vol. 33, no. 10, pp. 659-674, 2007.

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

248

J. Muir, “Using the RDTSC instruction for performance
monitoring,” Intel Corporation, Tech. Rep., 1997. [Online]. Available:
http://cs.smu.ca/ jamuir/rdtscpm1.pdf

L. Lamport, “Concurrent reading and writing,” in Communications of
the ACM, vol. 20, no. 11, pp. 806-811, 1977.

J. D. Valois, “Lock-free linked lists using compare-and-swap,” in Proc.
of the Fourteenth ACM Symposium on Principles of Distributed Com-
puting, August 1995.

M. M. Michael and M. L. Scott, “Simple, fast and practical non-blocking
and blocking concurrent queue algorithms,” in Proc. of the 15th ACM
Symposium on Principles of Distributed Computing, pp. 267-275, 1996.
D. Fober, Y. Orlarey, and S. Letz, “Optimised lock-free FIFO queue,”
TRO10101, GRAME - Computer Music Research Laboratory, Tech.
Rep., January 2001.

T. L. Harris, “A pragmatic implementation of non-blocking linked-lists,”
in Lecture Notes in Computer Science, pp. 300-314, 2001.

M. Herlihy, V. Luchangco, and M. Moir, “Obstruction-free synchro-
nization: Double-ended queues as an example,” in Proc. of the 23rd
International Conference on Distributed Computing Systems, pp. 522—
529, 2003.

P. Tsigas and Y. Zhang, “Efficient and simple implementations of the
wait-free queue classes of the real-time specification for java,” 2002-01,
Department of Computer Science, Chalmers University of Technology,
Tech. Rep., 2002.

M. David, “A single-enqueuer wait-free queue implementation,” in
International Symposium on Distributed Computing, pp. 132—143, 2004.

SIES 2009

