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ABSTRACT
A common problem in event-triggered real-time systems is caused
by low-priority tasks that are implemented as interrupt handlers in-
terrupting and disturbing high-priority tasks that are implemented
as threads. This problem is termed rate-monotonic priority inver-
sion, and current software-based solutions are restricted in terms of
more sophisticated scheduler features as demanded for instance by
the AUTOSAR embedded–operating-system specification.

We propose a hardware-based approach that makes use of a co-
processor to eliminate the potential priority inversion. By evaluat-
ing a prototypical implementation, we show that our approach both
overcomes the restrictions of software approaches and introduces
only a slight processing overhead in exchange for increased pre-
dictability.

Categories and Subject Descriptors
C.3 [Special-purpose and Application-based Systems]: Real-time
systems and embedded systems; D.4.1 [Operating Systems]: Pro-
cess Management—Threads; D.4.7 [Operating Systems]: Organi-
zation and Design—Real-time systems and embedded systems

General Terms
Design, Performance

Keywords
CiAO, Real-Time Systems, Priority-Driven, Rate-Monotonic Pri-
ority Inversion, TriCore, Interrupt Handling

1. INTRODUCTION
Besides functional correctness, timeliness is the most important

property of real-time systems, since results that are delivered too
late may have the same impact as incorrect ones. Thus, it is nec-
essary that the timely completion of all tasks associated with hard
deadlines can be guaranteed in advance by performing a schedula-
bility analysis. The more predictable the overall system behavior
is, the more likely it is that a schedulability analysis yields a precise
and safe result.
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1.1 Rate-Monotonic Priority Inversion
Unfortunately, current event-triggered systems maintain a bifid

priority space: The hardware reigns over the priorities associated
with interrupts, and the operating system governs the priorities of
threads. Leyva-del-Foyo et al. showed that real-time systems can
suffer significantly from such a bifid priority space [5]: Interrupts
that are associated with soft or low-priority real-time tasks may
interrupt hard real-time tasks with higher priorities. This can in-
fluence the response times of the high-priority tasks at such a rate
that they may miss their deadlines. This disturbance caused by
low-priority tasks implemented as interrupt handlers is known as
rate-monotonic priority inversion. Often only relatively weak as-
sumptions can be made about the occurrence rates of such soft real-
time tasks, which also leads to a less predictable system behavior.
Hence, the results of a schedulability analysis will also be less pre-
cise and, thus, more pessimistic.

To tackle this problem, Leyva-del-Foyo et al. suggested to im-
plement all tasks as threads, and to trigger them from very short
interrupt handlers by posting a semaphore, for instance [5, 6]. Fur-
thermore, an interrupt-leveling mechanism implemented in soft-
ware prevents any disturbance by lower-priority interrupt handlers
by masking all corresponding interrupt sources. However, this so-
lution is not suitable for systems that demand more sophisticated
scheduler features like being able to store multiple activations of a
task or allowing for multiple tasks with the same priority. For in-
stance, the AUTOSAR-OS standard [2], whose implementations
are widely used in automotive microcontrollers, prescribes such
abilities.

1.2 Parallel, Hardware-Supported
Interrupt Handling

Our approach is hardware-based and prevents unwanted distur-
bance without masking any interrupts. Instead, we redirect inter-
rupt requests to a coprocessor and handle them in parallel to the
normal program execution. Our solution improves on the one pro-
posed by Leyva-del-Foyo et al. by eliminating its weaknesses:

• Multiple task activations can be stored. With the software-
based solution, at most one additional activation of the same
task can be buffered by the hardware.

• Multiple tasks can share the same priority while the order of
their activations is preserved. This is not possible with the
software-based approach.

• We do not use semaphores to inform a task about event oc-
currence. Explicit waiting for a semaphore in the software-
based solution prevents the implementation of stack-sharing
techniques, which are very important in embedded systems
to save costly RAM.
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Figure 1: Parallel–Interrupt-Handling Design

Section 2 provides a detailed description of our approach and
clarifies its improvements over the software-based approach. We
implemented a prototype of our approach in the CiAO operating
system for the TriCore microcontroller (see Section 3) and eval-
uated its properties (see Section 4). Work that is related to ours
is given in Section 5. Section 6 discusses aspects related to our
approach—like the problem of interrupt overload in the context of
our solution, or its general applicability.

2. DESIGN
A design overview of our approach is sketched in Figure 1; it re-

quires an additional hardware component that works in parallel to
the main CPU. Furthermore, that component must also be able to
service interrupt requests issued by other peripheral devices, to ac-
cess scheduler data structures, and to send a signal to the CPU—via
an inter-processor interrupt, for instance. Since our implementation
targets the TriCore microcontroller, this hardware component is the
peripheral control processor (PCP), but any coprocessor with simi-
lar properties is suitable for our purposes.

We prevent rate-monotonic priority inversion by redirecting all
hardware interrupt requests to the PCP and by executing them on
the PCP. Furthermore, we configure the interrupt-control system to
map the task priorities to interrupt priorities in order to create the
unified priority space that is necessary to avoid rate-monotonic pri-
ority inversion. Interrupt-control systems supporting this are com-
mon in state-of-the-art microcontrollers used for embedded sys-
tems, the TriCore being among them. The mapping itself is appli-
cation-dependent and only needed to initialize the interrupt system
properly.

The interrupt handler on the PCP coprocessor has the responsi-
bility to activate the task that is associated with the given interrupt
source. To accomplish this activation, the PCP needs to access the
data structures of the scheduler. If and only if the activated task
has the highest priority of all ready tasks in the system, the PCP in-
forms the CPU that a different thread has to be dispatched. This is
done by signaling an asynchronous system trap (AST) to the CPU.
The AST is implemented as an interrupt handler on the CPU and
simply triggers rescheduling on the CPU. In contrast to the ISRs
that are executed on the PCP, the AST is only triggered and thus
only interrupts the CPU if a task of higher priority becomes ready.
Hence, it is not a source for rate-monotonic priority inversion itself.

2.1 Design of the PCP Interrupt Handler
The control-flow structure of the interrupt handler executed for

every interrupt request signaled to the PCP is given in Figure 2.
First, the interrupt source causing the current request has to be

acknowledged. Following that, the task associated with the inter-
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Figure 2: Structure of the PCP Interrupt Handler

rupt source is looked up from the application configuration and is
activated. Eventually, the priority of the currently running task is
compared to the one of the recently activated task and the CPU is
informed about the rescheduling via an inter-processor interrupt if
necessary.

To keep the latency of a task activation for high-priority tasks
as small as possible, the ISR on the PCP can be interrupted by in-
terrupt requests of higher priority. Both this and the fact that the
ISR is executed on the PCP in parallel to the tasks on the CPU im-
plies the necessity to synchronize the access to commonly used data
structures. Synchronization is achieved by guaranteeing mutual ex-
clusion within two critical sections CS1 and CS2 (see Figure 2).
These critical sections are secured by two nested locks. The outer
PCP lock prevents that the ISR is interrupted by high-priority inter-
rupt requests by locking the interrupts on the PCP. The inner lock
ensures mutual exclusion against the scheduler via Peterson’s algo-
rithm, a spinlock-based mutual-exclusion algorithm [9]. The PCP
lock has to be taken before the scheduler lock; otherwise, a dead-
lock occurs if an ISR tries to take the scheduler lock that is already
locked by an interrupted ISR.

We decided to guard the critical sections CS1 and CS2 con-
tiguously and not separately. Since we use Peterson’s algorithm to
synchronize the kernel and the interrupt handler, the interrupt han-
dler can be blocked by the kernel every time it tries to acquire the
scheduler lock. The blocking time introduced at that point would be
larger than both of the two critical sections CS1 and CS2 together
(see also Section 4.3).

The prolog of the ISR does not have to be synchronized since
we target statically-configured systems such as AUTOSAR OS [2]
or OSEK OS [17]; that is, the association of interrupt sources does
not change at runtime.



However, the activation of the task associated to the interrupt
request (critical section CS1) obviously demands for synchroniza-
tion. It has to be guarded against interruptions by other interrupt
requests, since these also activate tasks and, thus, manipulate the
same data structures. The activation also has to be guarded against
interleaving accesses from the CPU, as a task executing on the CPU
can alter the scheduler data structures in a synchronous manner—
when a task terminates, for instance.

The second critical section (CS2) has to be synchronized to pre-
vent rate-monotonic priority inversion on the CPU. Provided the
current ISR is interrupted exactly after checking if scheduling is
necessary and before informing the CPU about the positive out-
come of this check, then an interrupt is signaled by both the inter-
rupting high-priority ISR and the lower-priority ISR that was inter-
rupted. This would cause an interrupt on the CPU that does not re-
sult in dispatching a task, as rescheduling and dispatching the high-
priority task has already taken place. The additional scheduler lock
is necessary because a task running on the CPU could manipulate
the system in such a way that makes rescheduling unnecessary—
by activating and dispatching a highest-priority task, for instance.
Again, this scenario would result in an unnecessary interrupt on the
CPU, which could be interpreted as rate-monotonic priority inver-
sion.

Hence, the design of the PCP interrupt handler completely elim-
inates rate-monotonic priority inversion while keeping the interrupt
latency as low as possible.

2.2 Advantages over Software-Based Designs
In contrast to software-based approaches to avoid rate-mono-

tonic priority inversion (such as the one presented in [5]), the par-
allel–interrupt-handling approach does not require to mask lower-
priority interrupt sources. This is because the task leveling in our
approach is implemented in hardware using the interrupt system—
which is designed for that purpose—and not artificially in software.

Our approach therefore introduces some significant conceptual
advantages.

2.2.1 Multiple Task Activation
Masking and unmasking interrupt sources to prevent rate-mono-

tonic priority inversion like performed in [5] results in an inflexible
handling of tasks that are activated more than once, as illustrated
by the example in Figure 3 (a). The graph shows two tasks T1 and
T2, with T1 having a higher priority than T2. At time t1, task T1

is activated for the first time and, hence, preempts the previously
running task T2. During its execution, T1 is activated two more
times at t2 and t3. The first activation at time t2 can be buffered by
the interrupt system (provided a level-triggered interrupt system is
used), but the second activation at t3 will definitely be lost. Thus,
when T1 terminates at t4, it will only be scheduled one more time.

Our approach does not suffer from this limitation, as illustrated
by the same example in Figure 3 (b). Since no interrupt sources are
masked, the interrupt requests at t2 and t3 can be serviced by the
PCP and task T1 is activated twice, leading to two more executions
of T1 after t4. Hence, arbitrary multiple-activation scenarios as
required by the AUTOSAR-OS specification, for instance, can be
handled as long as the scheduler supports them.

2.2.2 Multiple Tasks per Priority
The software-based approach also has limited capabilities to han-

dle multiple tasks sharing the same priority, as indicated by the ex-
ample in Figure 4 (a). At t2 and t3, two tasks T2 and T3 sharing the
same low priority are activated; the requests are buffered in hard-
ware, because the interrupt sources are masked at this point. It then

depends solely on the hardware which of these tasks is handled first
when T1 terminates at t4.

Our approach, however, preserves the activation order of tasks,
as can be seen in Figure 4 (b). Since interrupt sources are not
masked, the task activations can be carried out in the order of their
occurrence and the corresponding threads can be enqueued in the
scheduler accordingly. Thus, different tasks sharing the same pri-
ority can be handled without losing the order of their activations as
required by AUTOSAR OS, for instance.

2.2.3 Stack Sharing
The software-based design does not only limit scheduling fea-

tures, but it also hampers the employment of stack-sharing tech-
niques, which are crucial in embedded systems to save expensive
RAM. The software leveling requires all event handlers to be sched-
uler-managed threads, which are then informed about the event oc-
currence via a single-sided synchronization facility like a sema-
phore posted by the ISR executed by the hardware. Thus, every
thread has to wait for a corresponding semaphore. This use of
blocking, single-sided synchronization makes the implementation
of effective stack-sharing techniques very cumbersome and ineffi-
cient [12].

Our approach does not rely on blocking operating-system prim-
itives, allowing for unrestricted stack optimization and, therefore,
optimization of the system’s RAM consumption.

3. IMPLEMENTATION
We prototypically implemented our approach on the TriCore mi-

crocontroller platform by extending our CiAO research operating
system. In the following subsections, we describe the operating-
system environment, the relevant peculiarities of the hardware plat-
form, and the details of the interrupt-handler implementation.

3.1 The CiAO System
CiAO1 is a configurable family of operating systems that targets

embedded and deeply embedded systems and supports the TriCore
platform detailed below [14]. The particular variant that we used
for the extension and evaluation is oriented at the OSEK-OS [17]
and AUTOSAR-OS [2] specifications. It therefore implements an
event-triggered operating system with a multi-level queue sched-
uler without time-slicing and statically assigned priority levels for
the threads.

In the standard configuration, the CiAO kernel for the TriCore
platform is synchronized with interrupt service routines by raising
the interrupt priority level to the one of the ISR with the highest
priority upon entering the kernel, and resetting it to zero upon ex-
iting it. This way, ISRs triggered during that time are deferred by
the hardware until after the critical section. With the extension de-
scribed in this paper, the CPU running the tasks has only one inter-
rupt left that can interrupt it: the asynchronous system trap (AST)
triggered by the PCP. Hence, the kernel is kept synchronized by set-
ting the interrupt-priority to the one of the AST during the system
calls.

Since CiAO is implemented using techniques from aspect-ori-
ented programming (AOP [10])—namely the AOP language and
weaver AspectC++ [19]—, the adaptation of the kernel described
in this paper is implemented in a single, encapsulated aspect mod-
ule. This aspect includes the code to synchronize the kernel with
both the AST (as described above) and the PCP (using Peterson’s
algorithm, see Section 2.1). By making use of the AOP feature of
quantification, this heavily cross-cutting adaptation (each system

1CiAO is Aspect-Oriented.
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call has to be instrumented with the synchronization code), is kept
in a concise and therefore maintainable piece of code.

3.2 The TriCore Platform
Our prototype is implemented on top of a TriCore TC1796 mi-

crocontroller, which, as previously mentioned, has all the features
needed to realize our concept. The TriCore’s peripheral control
processor (PCP) provides a thread of execution in parallel to the
main processor and can be used for interrupt processing. Inside
the TriCore architecture, so-called service request nodes (SRNs)
represent interrupt sources. Each SRN can be assigned to a ser-
vice provider (either the CPU or the PCP) and be given an interrupt
level. Thus, these SRNs can be configured in such a way that they
implement an interrupt-leveling scheme directly in hardware as de-
scribed in Section 2. Data exchange between the PCP and the main
CPU is enabled by memory that is shared through a special bus;
the pieces of memory are mapped differently in the two processing
units, however.

We configured the system so that all external interrupts are sig-
naled to the PCP instead of the main processor. The program run-
ning on the PCP and reacting directly to the interrupts is built ac-
cording to our design explained in Section 2.1; it is detailed in the
following subsection. The only interrupt that is still signaled to the

CPU is used to trigger the AST. This mechanism is employed by
the PCP to cause rescheduling on the main processor if a thread
with a higher priority than the one of the currently executing thread
is activated.

To attach the threads maintained by the scheduler to the interrupt
sources and ISRs managed by the PCP, we use a table stored in
shared memory to map threads to interrupt sources; this table is
initialized upon system start-up.

3.3 The PCP–Interrupt-Handler
Implementation

The implementation of the PCP interrupt handler is split into
three different parts as sketched in Figure 2.

Since interrupt-source acknowledgment is performed automat-
ically by the hardware on the TriCore platform, the prolog only
consists of operations that are necessary to be able to subsequently
alter the data structures inside the operating system. These encom-
pass querying static data like the priority of the thread that belongs
to the currently handled interrupt request or the addresses of core
scheduler data structures like the ready list for threads. Since these
are read-only operations on static data, this part is interruptible by
both higher-priority PCP handlers and the main program flow run-
ning on the TriCore CPU.



During the first critical section,CS1, the thread corresponding to
the current interrupt’s source is inserted into the ready queue of the
scheduler. This part uses the variables queried during the prolog.

In the second critical section,CS2, the PCP handler has to send a
signal to the CPU if rescheduling becomes necessary. To determine
that this is the case, it has to check if the newly activated thread has
a higher priority than the one of the currently executing thread. In
addition to that, it has to check that there is no higher-level thread in
the ready list, because if a higher-level thread is already enqueued
in the ready list, it will get scheduled in the near future—rising the
priority level of the system to its level and rendering the AST use-
less. If neither of these criteria match and our thread in fact has
the highest priority, the AST signal is sent to the main processor to
trigger rescheduling. By performing the decision to send an AST
and the actual notification in an atomic way, it is ensured that ev-
ery AST sent really leads to a rescheduling on the main processor
as no new threads can be activated until after the AST is triggered.
This property thus completely prevents rate-monotonic priority in-
version.

The critical sections CS1 and CS2 are guarded as described in
Section 2.1. Interruptions by higher-priority PCP programs are
avoided by simply disabling interrupts on the PCP until the pro-
gram flow is past the critical section. To avoid concurrent modi-
fications of the scheduler’s data structures by the CPU, a spinlock
implementing Peterson’s algorithm is used.

4. EXPERIMENTAL EVALUATION
We conducted a detailed evaluation of our prototype that serves

two purposes: On the one hand, we show that our prototype elimi-
nates unwanted disturbance by low-priority and soft real-time ISRs,
and on the other hand, we quantify the overhead that is caused by
our implementation of the unified priority space.

4.1 Methodology
For our experiments, we use a TriBoard TC1796 by Infineon,

which features the TriCore TC1796 microcontroller. It is clocked
at 50 MHz, resulting in an instruction cycle of 20ns. We further-
more use a Lauterbach TRACE32 hardware debugger and tracer to
precisely determine all execution times on the CPU. The tracing fa-
cility, however, does not cover the PCP. Thus, for the measurements
on the PCP, we toggle I/O pins and use a digital storage oscillo-
scope to determine the duration of the slopes at the I/O pins. We
use a function generator to generate square-wave signals at various
rates to mimic external events at the I/O pins of the TC1796. For
our measurements, we exclusively use the internal, no-wait-state
RAM of the TC1796 for both code and data.

4.2 Behavior
The first part of our evaluation shows that our prototype indeed

prevents unwanted disturbance on the CPU in the form of rate-
monotonic priority inversion. Our synthetic sample task set is de-
picted in Table 1; it consists of one hard–real-time task T1 and one
soft–real-time task T2 that can potentially disturb T1. In one sce-
nario, we implemented the soft–real-time task as an ISR in a tradi-
tional bifid priority space; in a second scenario, we implemented it
as a thread using our parallel–interrupt-handling prototype.

We measured the response time of the real-time task for both the
classic interrupt-handling approach with a bifid priority space in-
side the operating system and for our implementation of a unified
priority space for interrupts and tasks. We ensured that our proto-
type works as expected by examining the execution traces gener-
ated by the TRACE32 debugger, and, secondly, by measuring the
response time of the task T1, also with the help of the debugger.

Task Period Deadline Execution Time
T1 50 ms 50 ms 20 ms
T2 2 ms – (soft) 1 ms

Table 1: Sample Task Set for the Evaluation

(a) Traditional Interrupt Handling

(b) Parallel Interrupt Handling

Figure 5: Response Times of the Task T1

The distribution of the obtained response times for a traditional
interrupt-handling implementation and for our prototype are de-
picted in Figures 5 (a) and (b), respectively. It can clearly be seen
that the response times are significantly higher in the traditional
implementation and also show a noticeable jitter. These symptoms
are caused by the disturbance of T1 by the soft–real-time ISR T2.
The jitter would have been even bigger if we really had generated
external events at a variable rate. For reasons of feasibility, how-
ever, we triggered the ISR with a constant period of 2 ms, as shown
in Table 1.

In contrast to that, the parallel interrupt handling implemented in
our prototype shows a much better performance. The low response
times that are almost identical to the execution time of T1 and the
really tiny jitter (caused by measurement inaccuracy) indicate that
T1 is no longer disturbed by the soft–real-time task. We were also
able to prove the absence of this disturbance in the aforementioned
execution traces.

4.3 Overhead
In order to assess the costs of our approach, we quantified the

overhead of our solution in contrast to traditional interrupt handling
and software-based solutions by comparing the best-case and the
worst-case latencies when reacting to external events. We mimiced
the implementation of software-based solutions by a thread waiting
for a semaphore; the semaphore is posted by an ISR that is triggered
by an external event. The observed latencies are shown in Table 2.

The constituents of these latencies are depicted and explained
in Figure 6. It should be noted that the hardware latency HW
can vary slightly at all occurrences. However, we are not able
to determine these latencies precisely, so the hardware latencies



Best Case (bc) Worst Case (wc)
Traditional 0.900µs 6.660µs
Software-Based 9.062µs 14.822µs
Parallel 9.325µs 23.235µs

Table 2: Event-Handler Latencies

OS
I

OS
I

OS
sched

OS
sched

OS
I

ASTISRHW HW

ASTHWCSHW PCP

CPU

parallel

sw−based

traditional

HW Hardware interrupt latency
OSI OS interrupt context management
OSsched OS scheduling and dispatching
ISR Interrupt service routine
AST Asynchronous system trap
CS Critical sections CS1 and CS2

Figure 6: Constitution of the Event-Handler Latencies

are mentioned for illustrative reasons only. The best-case latency
of the traditional interrupt handling only consists of interrupt con-
text management performed by the operating system, and, thus, is
much shorter than the latency of the software-based solution and
our parallel interrupt handling. The software-based solution and
our parallel–interrupt-handling implementation differ only in the
interrupt handler that finally triggers the AST on the CPU. In the
software-based implementation, this interrupt handler is executed
on the CPU, whereas it is executed on the PCP for our parallel in-
terrupt handling, leading to an average overhead of 263ns in the
best-case event-handling latency.

The worst-case latencies depicted in Table 2 result from addi-
tional blocking an event handler can suffer. For the reason of a
fair comparison, we assume that all implementations have to syn-
chronize against the OS kernel to protect OS-internal data struc-
tures. The event handler in the traditional interrupt handling and the
software-based approach can be blocked by at most one system call
into the OS kernel. In the software-based approach, the AST itself
cannot be blocked by the kernel because it is executed on the same
processor; thus, this blocking time is determined by the longest sys-
tem call. In the CiAO OS, the longest system call takes OSmax =
5.760µs, leading to the worst-case latencies wc = bc + OSmax

as given in Table 2. In the parallel interrupt handling, both the in-
terrupt handler on the PCP and the AST might have to wait for the
scheduler lock to become available. Thus, the event handler might
be blocked by the kernel twice. As the interrupt handler on the
PCP additionally has to synchronize against overlapping execution
of other interrupt requests on the PCP (see Section 2.1), interrupts
are locked throughout the critical sectionsCS1 andCS2, imposing
an additional blocking time that is equivalent to the execution time
of these critical sections CS = 2.390µs. All in all, this results in
a worst-case latency of wc = bc+ 2 ·OSmax +CS = 23.235µs.

If we had guardedCS1 andCS2 separately (see also Section 2.1),
the interrupt handler on the PCP could additionally be blocked
at the entrance of CS2, yielding a worst-case latency of wc =

bc + 3 · OSmax + CS = 28.995µs. Thus, contiguously locking
CS1 and CS2 improves the worst-case latency by 5.760µs while
only minimally increasing the blocking time on the CPU (less than
2.390µs).

On the other hand, a thread running on the CPU can be blocked
by the PCP holding the spinlock during the critical sections CS1

and CS2. The maximum blocking time that can be suffered here
sums up to CS = 2.390µs and can occur at every system call is-
sued by that thread. The relative performance impact of this block-
ing grows with the performance gap between the PCP and the CPU,
of course. As a countermeasure, we kept the portion of code that
is executed on the PCP as small as possible. Furthermore, the crit-
ical sections CS1 and CS2 could be guarded separately. That way,
an improved blocking time on the CPU is traded for an increased
maximum latency when reacting to external events.

Hence, in the best case, our solution imposes almost no overhead
compared to a software-based solution, but it is much more flexible
with respect to more sophisticated scheduler features as demanded
by common OS specifications and the possibility for stack shar-
ing, as discussed in Section 2.2. Due to increased synchronization
demand between the PCP and the CPU, our parallel interrupt han-
dling performs worse than a software-based solution in the worst
case, but this still is an affordable price to pay if more sophisti-
cated features are needed in combination with a predictable system
behavior. Moreover, one should keep in mind that the worst-case–
latency scenario of the parallel interrupt handling is rather unlikely
to happen. It requires two closely following system calls, whereas
in the software-based solution, one system call is sufficient to reach
the worst-case latency.

5. RELATED WORK
The predictability issues introduced into real-time systems by

interrupts are the target of a specific area of real-time–systems re-
search. Many solutions try to ignore unwanted interrupt requests [2,
18]. For each interrupt source, parameters like minimum inter-
arrival times, maximum arrival rates, or maximum burst lengths
have to be specified; these parameters are then monitored during
normal operation. Interrupt requests that do not fit within the given
boundaries are treated as unwanted interrupts and are ignored. Such
methods are definitely useful to prevent and bound overload situa-
tions caused by interrupts, but they do not eliminate the problems
that are introduced by a bifid priority space. High-priority hard
real-time tasks can still suffer disturbance by soft real-time tasks
implemented as ISRs, for instance. Our solution itself is still sus-
ceptible to interrupt overload on the PCP to a certain degree. How-
ever, it is possible to additionally guard the PCP against such over-
load scenarios by implementing the techniques mentioned above
there. The application itself, executed on the main processor, is
automatically guarded against overload situations like these by the
unified priority space. Since the scheduler controls every activity
on the main processor, measures like the sporadic server [20] can
be used to bound the time allocated to handlers of asynchronous
events.

Asymmetric multiprocessing concepts have been used in the op-
erating-systems community before, of course. Specialized copro-
cessors have also been used to support the operating system with
certain tasks. The main target of those approaches is to maximize
throughput and efficiency of the operating system, however. Popu-
lar applications are latency hiding in message-passing systems [3]
or network-protocol offloading [11], for instance. An operating-
system kernel that offers a solution related to ours is the Spring
kernel by Stankovic and Ramamritham [21]. It uses an asymmetric-
multiprocessing approach where so-called front-end processors in



a separated I/O subsystem are used to offload interrupt process-
ing. That way, rate-monotonic priority inversion can effectively be
avoided. The Spring kernel, however, is designed to execute tasks
in a non-preemptive manner only. Thus, it is not suitable for many
real-time systems—like implementations of AUTOSAR OS, for in-
stance.

There are other approaches that try to aid the operating-system
scheduler by using hardware abstractions; however, almost all of
them rely on customized hardware. These approaches—including
cs2 [15], FASTCHART [13], Silicon TRON [16], HW-RTOS [4],
and Atalanta [22, 1]—move operating-system functionality to the
hardware level by synthesizing special circuits on FPGA boards
and offering that functionality on a co-processor–like basis. Some
of these solutions may also prevent rate-monotonic priority inver-
sion as a side effect, but none of them explicitly address this is-
sue. In contrast, our approach does not implement dedicated sched-
uler functions in hardware; instead, we use commodity off-the-shelf
hardware to implement a unified priority space (see also Section 6.3),
thereby avoiding rate-monotonic priority inversion.

6. DISCUSSION
In this section, we discuss the implications of the related problem

of interrupt-overload situations and how it affects our approach, the
possibility to directly execute threads and ISRs on the PCP, as well
as the general applicability of our solution.

6.1 Interrupt Overload
As already mentioned in the preceding section, our approach

is still susceptible to interrupt-overload scenarios on the PCP—a
high-priority interrupt could fully load the PCP. However, software-
based approaches like the one presented in [5, 6] suffer from the
same problem. In those approaches, a small ISR is needed to notify
the task related to the particular event—this ISR could completely
utilize the CPU.

A possible remedy for both approaches is to extend the sporadic-
server algorithm to also affect the interrupt sources. Whenever the
server’s execution budget is exhausted, not only the scheduler has
to delay further activations of this sporadic server, but also the inter-
rupt sources triggering this sporadic server have to be reconfigured.
Depending on the sporadic-server algorithm actually used, these in-
terrupt sources have to be disabled or given a lower priority while
the server has no execution budget. Thus, this task cannot consume
more computing time via ISRs than the sporadic server is actually
allotted, which effectively prevents interrupt overload.

6.2 Executing Threads and ISRs on the PCP
The PCP provides a control flow completely independent of the

CPU, which gives rise to the idea to also execute threads or ISRs on
the PCP. There are, however, two reasons that keep us from doing
that.

First, executing threads on the PCP would induce rate-monotonic
priority inversion on the PCP. Thus, this is not an option, as we
want to use the PCP to prevent rate-monotonic priority inversion.
Even the separation of hard and soft real-time tasks and a corre-
sponding allocation of these tasks on separated cores (i.e., the CPU
and the PCP) would not eliminate rate-monotonic priority inversion
completely. While interruptions of soft real-time tasks can be toler-
ated, rate-monotonic priority inversion also arises for ISRs associ-
ated with hard real-time tasks having different priorities. Thus, this
measure alone is not a solution for the problem of rate-monotonic
priority inversion, but could be used to minimize inter-processor
synchronization between the CPU and the PCP.

Second, the PCP has much less computing power in comparison

to the CPU. It is designed for rather simple tasks like controlling
DMA transfers or interrupt preprocessing, and for exactly that pur-
pose we use the PCP.

6.3 Applicability
We have implemented our approach in the CiAO operating sys-

tem on the Infineon-TriCore microcontroller. The concept itself,
however, is applicable to a broad range of hardware architectures
and OS kernels. First, almost every multicore-processor or multi-
processor system is suitable for an implementation of this concept,
provided the priorities of the interrupt sources can be configured as
needed. Most interrupt subsystems of microcontrollers used in the
automotive area, for instance, offer such features. Second, there
are other microcontrollers available that provide similar coproces-
sors comparable to the PCP of the TriCore architecture. Exam-
ples include the S12X microcontrollers and their XGATE copro-
cessor [7], or the MPC5510 microcontroller family and their I/O
coprocessor [8] by Freescale.

Our current implementation itself, of course, is bound to the
hardware actually used. The effort to port our concept to other
architectures, however, is small. First of all, it is transparently im-
plemented within the OS and does not affect the application itself.
Secondly, only a few small hardware-dependent parts have to be
ported: the interrupt handler executed on the coprocessor, signaling
the CPU, and the initialization of peripheral hardware components.
In our prototype, these parts sum up to only 187 lines of code. This
number mainly comprises the PCP interrupt handler, which is writ-
ten in assembly due to the lack of a C/C++ compiler.

Concerning the applicability to other OS kernels, any event-driven
RTOS kernel is suitable to use the concept of parallel interrupt han-
dling in order to maintain a unified priority space. The only prereq-
uisite is a special interrupt that triggers rescheduling in the kernel,
which runs on the main CPU.

7. CONCLUSION
We have shown that rate-monotonic priority inversion can be

avoided by making use of a coprocessor as available on commod-
ity embedded hardware like the Infineon-TriCore platform. Our
hardware-supported approach shows significant conceptual advan-
tages over previously suggested software-based solutions; these ad-
vantages include the possibility for stack-sharing, the support for
multiple task activations, and multiple tasks per priority—as de-
manded by the AUTOSAR–embedded-OS specification, for instance.
Furthermore, by evaluating an implementation of our approach for
the CiAO operating system, we have shown that the concept com-
pletely avoids the disturbance caused by interrupts from lower-
priority events. Our solution only bears a slight overhead, which
is a small price to pay for the increased level of predictability that
is vital to any real-time system.
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